本文详细研究了通过金属有机化学气相沉积生长的 GaN ~ 1 nm ! /Al 0.2 Ga 0.8 N ~ 3.3 nm ! 20 周期超晶格的光致发光 ~ PL !。在低温状态下,PL 发射能量、线宽和强度对温度的依赖性与涉及带尾态的复合机制相一致,该复合机制归因于少量界面无序。我们超晶格中非辐射中心的活化能与我们得出的尾态分布宽度值非常吻合。此外,我们发现,在高温下控制带间 PL 能量的声子的平均声子能量对于超晶格来说比对于高质量 GaN 薄膜来说更大。这一观察结果与预测 GaN-AlN 基纤锌矿异质结构声子模式特性的模型计算结果一致。© 2000 美国物理学会。 @S0003-6951〜00!00915-3#
与传统的非线性光学晶体(如BAB 2 O 4,KTIOPO 4或LINBO 3)相比,光子对的半导体集成源可能会在泵波长上运行。Bragg反射波导(BRW)的情况也是这种情况,将参数下转换(PDC)靶向电信C波段。藻类合金的大型非线性系数和光的强限制可实现极明亮的集成光子对源。在某些情况下,在BRW中观察到了大量有害的宽带光致发光。我们表明,这主要是由于核心附近线性吸收以及随后在半导体中深杂质水平的电子对辐射重组的结果。对于带有BRW的PDC,我们得出结论,在S波段的长波长端或短C波段附近运行的设备需要短的时间滤波,需要短于1 ns。我们预测,将工作波长转移到L波段会将光致发光量减少70%,并在材料组成中进行少量调整会导致其总还原90%。这样的措施使我们能够提高平均泵功率和/或重复率,这使得积分的光子对源具有芯片多吉格希氏兹对速率的可行,用于将来的设备。
摘要:目前,单结钙钛矿基太阳能电池的光电转换效率已达到26%以上。钙钛矿基光电器件效率的进一步提升主要受到缺陷的限制,缺陷会导致载流子的非辐射复合。为了提高效率并确保可重复地制造高质量的层,了解钙钛矿的成核和生长机制以及相关的工艺控制以降低缺陷密度至关重要。在本研究中,我们研究了一种有前途的窄带隙钙钛矿——甲脒甲基铵碘化铅 (FAMAPbI 3 ),用于高性能单结太阳能电池。通过掠入射广角 X 射线散射和光致发光实时检查了 FAMAPbI 3 真空共沉积过程中结构和光电特性的时间演变。这种分析技术的组合揭示了钙钛矿沉积早期阶段与晶格应变相关的固有缺陷密度和层形貌的演变。关键词:铅卤化物钙钛矿、真空沉积、原位表征、缺陷、固有应力■简介
光是一种能量形式,其行为可以用波和粒子的性质来描述。电磁辐射的某些性质,例如它从一种介质传播到另一种介质时的折射,可以通过将光描述为波来得到最好的解释。其他性质,例如吸收和发射,最好将光视为粒子来描述。自 20 世纪前 25 年量子力学发展以来,电磁辐射的确切性质仍不清楚。尽管如此,波和粒子行为的双重模型为电磁辐射提供了有用的描述。1.1 发光发光是一门与光谱学密切相关的科学,光谱学是研究物质吸收和发射辐射的一般规律。自古以来,海洋和腐烂有机物中的细菌、萤火虫和萤火虫等发光生物的存在就让人类既困惑又兴奋。对发光这一主题的系统科学研究始于 19 世纪中叶。 1852 年,英国物理学家 GCStokes 发现了这一现象,并提出了发光定律,即现在的斯托克斯定律,该定律指出发射光的波长大于激发辐射的波长。1888 年,德国物理学家 E. Wiedemann 在文献中引入了“发光”(弱辉光)一词。某些物质吸收各种能量后发光而不产生热量的现象称为发光。发光是在各种激发源下获得的。发射光的波长是发光物质的特性,而不是入射辐射的特性。发光系统不断消耗能量来驱动发射过程。通用术语“发光”包括各种各样的发光过程,这些过程的名称源于为其提供动力的各种能量。光致发光包括荧光和磷光,是众多发光类别之一。为了说明发光的多样性,下面介绍一些最常见的发光类型:1. 电致发光:电流通过电离气体时产生。例如气体放电灯。2. 放射性发光:从放射性衰变释放的高能粒子中获取能量。例如发光的镭表盘。3. 摩擦发光:源于希腊语 tribo,意为摩擦。当某些晶体受到压力、挤压或破碎时,就会发出这种发光。例如某些类型的糖晶体。4. 声致发光:在暴露于强声波(压缩)的液体中产生这种发光。5. 化学发光:从化学反应中获取能量。化学键的断裂提供了能量。
数据操作、分析和显示 • 算术(+、-、×、/、附加) • 缩放、标准化和基线减法 • 裁剪 • 网格显示、对数/线性刻度 • 2D、3D、轮廓和颜色图 • 文本显示和编辑选项中的数据显示 • 使用非线性最小二乘拟合程序进行完全衰减数据拟合 • 指数重卷积或尾部拟合 • 1-4 个独立的指数衰减时间,固定或作为自由拟合参数 • 移位参数,固定或作为自由拟合参数 • 背景拟合,固定或作为自由拟合参数 • 卡方拟合优度检验 • 加权残差,Durbin-Watson 参数 • 自相关函数 • 各向异性计算 • 提取时间分辨光谱(TRES 数据切片) • 全面的测量和文件属性用于记录保存 • ASCII/CSV 数据输入和输出选项 • 复制和粘贴选项以方便演示和出版 • 可选的高级荧光寿命数据分析包
图1:无等值的电子孔重组(左)和CW泵送(右)下的非平衡电子分配。在两个面板中,费米水平都用水平,黑色虚线在能量µ f处描绘。右图:通过从泵浦光束吸收频率ωL的光子通过吸收光子,将低能电子升级为在费米水平上。这些热电子及其相应的热孔的积累受到平衡的松弛限制,这主要是由于电子电子相互作用。在固定方案中,激发与松弛之间的竞争产生了稳定的热电子和孔(红线),各自的职业概率k n和1 -k n。左图:两个电子孔(E-H)重组事件的方案,一个高于费米水平的一个,一个是通过电子的非平衡分布来实现的。相应的状态职业概率由蓝色虚线表示。请注意,k n〜0的夸张值。2已用于简化说明,当逼真的值为k n〜 i l /(10 11 w.cm -2)时,样品处的泵浦强度。请参阅非平衡分布的分析形式的方法和k n的解释。
无机闪烁体可以用高能量吸收电离辐射,以瞬时将其转换为低能的光子。(1-3)利用此功能,通过将光电遗传学与可以将光子转换为电信号转换为电信号的光探测器将闪烁体应用于辐射探测器。(4,5)闪烁检测器根据其应用而分为电流和光子计数模式测量值。(6,7),尤其是当前模式类型的检测器集成了一毫秒的信号,并已用于X射线计算机断层扫描(CT)和X射线射线照相的应用中。(8)当前模式类型的闪烁体需要高发射强度,大的有效原子数(z eff),高密度(ρ)和低余辉水平(AL)。但是,由于没有闪烁器满足所有必需的属性,因此已经开发出新的闪烁体。(9-14)基于HFO 2的化合物,例如RE 2 HF 2 O 7(RE = LA,GD,LU)和AE HFO 3(AE = CA,SR,BA)引起了人们的注意,因为它们的大Z eff和Highρ。在先前关于基于HFO 2的闪烁体的报告中,只有Z EFF(65.2)和ρ(6.95 g/cm 3)的Cahfo 3显示出闪烁的光屈服于10,000光子/MEV。(15–21)此外,我们的研究小组研究了用Ti,CE,PR,TB和TM掺杂的Cahfo 3的闪烁特性,(18,21-26)
摘要在这项研究中,掺杂元元件对超声喷涂的Moo 3薄膜的线性,非线性吸收和光学限制特性的影响。线性光学结果表明,随着带量的缺陷状态的密度与掺杂的密度增加,并结合使用带隙能量和URBACH能量的增加。广泛的光致发光排放在350和600 nm的范围内,通过掺杂降低了强度。揭示了对非线性吸收(NA)行为的缺陷效应,使用两个理论模型分析了OA Z-SCAN数据,仅考虑两种光子吸收(2PA)(模型1)和一个光子吸收(OPA),2PA和自由载体吸收(模型2)。观察到NA行为,并发现由于新的氧空位和进一步缺陷状态的形成而产生的输入强度和掺杂原子会增强。模型2中薄膜的Na系数比模型1中的2PA系数高100倍。该结果揭示了缺陷状态对NA行为的强烈影响。在研究的掺杂原子中,由于缺陷态密度较高,CU导致Na增强。虽然真正的2Pa是V和Fe掺杂的MOO 3薄膜的主要Na机制,但OPA和2PA是Ni,Zn和Cu掺杂的MOO 3薄膜的主要Na机制,因为它们的缺陷状态较高。Cu掺杂的MOO 3薄膜的光学限制阈值为0.026 MJ / cm 2,这是由于其增强的Na行为。考虑到获得的结果,这项研究为可见的波长区域中的光学限制器打开了掺杂的MOO 3薄片的潜力的门。
图1。天然TIO 2:NB(1 1 0)边界结构。(a),(b),(c)电子反向散射衍射(EBSD)图像质量和逆极图(IPF)地图,提供〜
5 帕多瓦大学化学科学系,Via Marzolo 1, 35131 帕多瓦,意大利 * 通讯作者:plinio@uniss.it 关键词:六方氮化硼,二维材料,光致发光 摘要 基于六方氮化硼纳米片(h-BNN)的功能光电应用的开发依赖于控制结构缺陷。特别是,已经观察到荧光发射取决于空位和取代缺陷。在目前的研究中,通过超声辅助液相剥离块体对应物获得了少层 h-BNN。制备的样品在可见光范围内表现出微弱的荧光发射,中心在 400nm 左右。通过在不同温度下在空气中氧化引入了定制缺陷。已经观察到氧化 h-BNN 的荧光发射显著增加,在 300°C 下处理的样品的发射强度最大。温度进一步升高(>300°C)会导致荧光猝灭。