1部门电子和计算机技术,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。2部分析化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。3苏利亚州大学库利亚(Culiacan),80040,墨西哥的院士。4 cienciasfísico-Matemáticas,锡那罗亚大学,库里亚坦大学,80040,墨西哥。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。 6部门 无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。 *通讯作者,alfonsos@ugr.es可用orcid列表:d.g. 0000-0002-7810-6345; Y.H. 0000-0002-1959-2187; F.J.R. 0000-0002-1582-9626; C.L.M. 0000-0002-6659-7781; I.B.P. 0000-0003-3997-9191; M.P.C. 0000-0001-8377-587X; D.P.M. 0000-0002-3294-8934,N.R。 0000-0002-6032-6921; A.S.C. 0000-0002-1360-6699。 摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。 这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。 特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。 1。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。6部门无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。*通讯作者,alfonsos@ugr.es可用orcid列表:d.g.0000-0002-7810-6345; Y.H.0000-0002-1959-2187; F.J.R.0000-0002-1582-9626; C.L.M.0000-0002-6659-7781; I.B.P.0000-0003-3997-9191; M.P.C.0000-0001-8377-587X; D.P.M.0000-0002-3294-8934,N.R。0000-0002-6032-6921; A.S.C.0000-0002-1360-6699。摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。1。为此,我们研究了所得的LIG模式的电阻,这是寻求优化的激光参数(雕刻功率和扫描速度)的函数。调整激光制造过程后,我们使用商用的基于银基电极作为参考,使用不同表面积进行了制造和表征与不同表面积的电极。因此,使用直径为15毫米,10毫米和6.5毫米的圆形电极用于使用商业设备在不同志愿者上获取ECG。随后使用尖端处理技术处理所采集的信号,以对检测QRS复合物检测的灵敏度,特异性,积极预测和准确性进行统计分析。结果表明,在噪声方面,提出的电极相对于先前报道的基于LIG的电极改善了信号的采集,并且确实比商业电极(即使是较小的表面积)提出了可比较甚至更好的结果,并且不需要使用电解质凝胶,具有附加优势。关键字:激光诱导的石墨烯,心电图,柔性电子,生物信号,电极,激光制造。引言心血管疾病(CVD)是全球死亡的主要原因[1]。根据世界卫生组织(WHO)的报告,2019年与CVD有关的死亡人数为1790万,占全球死亡人数的32%。此外,据估计,到2030年,CVD死亡人数每年将增加到2360万[2]。这些设备有望在因此,已经致力于早期诊断,预防和治疗这些疾病。心电图(ECG)在这种情况下起着至关重要的作用,因为它可以通过非侵入性监测心脏的电活动来早期检测CVD。传统上,获得ECG需要医院就诊并使用复杂的监测系统。但是,可穿戴健康监测系统(WHM)的出现彻底改变了这一领域[3]。
过去二十年来目睹了对Van-der-Waals(VDW)材料的研究爆炸,这是一类广泛的固体,在该固体中,平面晶体板由VDW部队粘合在一起。通常,这些材料只能将其稀释为几个原子层,甚至可以将其变成单个原子纸,从而意识到其传统散装形式的二维(2D)变体。由于在2000年代初期的单层(1L)的第一次驱动器以来,已经将各种VDW材料隔离并以2D极限进行了隔离和研究,包括金属,宽间隙绝缘子,半导体,半导体,半金属,超级导管,磁性材料,磁性材料,以及更多。[1]中,在这些半金属中,例如石墨烯和2D半导管,通常由VI组VI过渡金属二甲硅烷基(TMDC)代表,在基本凝聚的物理学以及在电子,电子,光电电子技术中以及在基本凝聚的物理学方面创造了令人兴奋的新机会。[2-4]由于光学相互作用和频段结构发生了巨大变化,在从几层到1L极限的过渡中可能发生,因此在2D Light-Matter相互作用和超级超平均光电设备中证明了2D半导体和半米的独特机会。这值得探索其光诱导的物理学,从而导致新型量子现象。2D材料的关键特性之一是增强的电子 - 电子库仑相互作用,其介电筛选和低维度引起。这些相互作用不仅强烈修改平衡频带结构,而且更改了(照片)激发的带构结构。[5],例如,强烈结合的激子[6](由绑定的电子和孔组成),即使在室温下,也要赋予2D半导体的光学响应。这些摘录显示出各种各样的物种,具有不同的自旋,[7] Monma,[8]和电荷[9]影响其光 - 肌电相互作用的频谱,动力学和应用。2D材料的另一个属性是它们能够将其堆放到其他2D材料和基板上,几乎没有约束。[10]这些结构中的层间相互作用促进了一种独特的手段,用于设计异质结构属性和功能,而不是组成材料的材料。[11,12]这些属性包括动量依赖性层
夜间的人造光暴露,包括恒定光(LL),是一种越来越普遍的环境发生,与人类和动物模型的情绪和认知障碍受损有关。多巴胺和多巴胺1受体众所周知可以调节昼夜节律和情绪。这项研究研究了LL对男性和雌性C57BL/6J小鼠的焦虑状,抑郁样和认知行为的影响,并评估了SKF-38393的消耗是否可以缓解这些负面行为抗果。小鼠暴露于LL或标准的12:12光:暗周期(LD)6周,亚组接受SKF-38393或水。所有小鼠的昼夜节律都不断监测,并被置于行为测试中,这些测试测定了它们的焦虑,抑郁症,学习和记忆行为。行为分析表明,LL的多动症和焦虑行为会增加,这两种性别的SKF-38393消费均可减轻这种行为。此外,雄性小鼠在LL下表现出Anhedonia,这是SKF-38393减轻的,而雌性小鼠对LL诱导的Anhedonia具有抵抗力。性别差异在流体消耗中出现,独立于照明条件,女性消耗了更多的SKF-38393,以及对DA的反应行为,包括新颖的对象识别和探索。这些结果表明,多巴胺1受体激动剂的低剂量口服消耗可以改善LL暴露的某些负面行为影响。这项研究强调了影响情绪和行为的慢性光,多巴胺和性别之间的复杂相互作用,这表明多巴胺1受体激动剂在调节行为结果中的潜在调节作用。
TobiasVölker,Gerd Wilsch,Igor B. Gornushkin,Lucie Kratochvilova,Pavel Porizka等。在具有激光器诱导的分解光谱的水泥糊状物中定量氯分析中的定量氯分析比较。Spectrochimica Acta B部分:原子光谱,2023,202,pp.106632。10.1016/j.sab.2023.106632。CEA-04466642
©2021 Elsevier。根据创意共享归因于noncmercial- noderivatives 4.0国际许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),允许在任何媒介中适当地被列入工作,允许在任何媒介中进行不受限制的,非商业用途,分发和复制。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在硅中产生荧光缺陷是确保量子光子设备进入现有技术的关键垫脚石。在这里,我们证明了飞秒激光退火的创建,该创建的W and g-Centers in Commercial Silicon上的绝缘体(SOI)先前植入了12 C +离子。它们的质量与使用常规植入过程获得的相同发射器相媲美;通过光致发光辐射寿命来量化,其零孔线(ZPL)的拓宽以及这些定量随温度的进化。除此之外,我们还表明,这两个缺陷都可以在没有碳植入的情况下创建,并且我们可以在增强W-Centers Emision的同时退火来消除G-Centers。这些演示与硅在硅中的确定性和操作生成有关。
光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定
借助光,人们可以找到耗散最小的机制来影响磁化。[1] 在这方面,亚铁磁材料迄今为止对超快激光激发表现出最显著的响应,首先是用单个 40 飞秒激光脉冲观察到金属亚铁磁合金 GdFeCo 中的磁化转换。[2] 已证明该机制是通过激光诱导加热后的强非平衡瞬态铁磁相 [3] 进行的。[4] 后来,通过光诱导磁各向异性变化,在介电亚铁磁体中实现了磁位的非热光学记录机制。[5] 最近,人们发现这种亚铁磁性电介质还能实现一种新颖的热辅助磁记录 (HAMR) 机制,[6,7] 它不需要像 GdFeCo 那样几乎完全退磁,而是依赖于磁各向异性的温度依赖性。 [8] 这就提出了一个问题:磁各向异性的超快变化是否也会在金属亚铁磁体中发挥作用。然而,尽管人们对金属亚铁磁体的研究兴趣浓厚,但尚未讨论磁各向异性超快动力学导致的磁化动力学和最终的磁切换。在这里,为了研究磁各向异性的温度依赖性在金属亚铁磁体的激光诱导磁化动力学中的作用,我们考虑了亚铁磁 Gd/FeCo 多层。在过去的几年中,人们研究了激光诱导的稀土过渡金属 (RE-TM) 多层异质结构现象,并将其与合金进行了比较,主要关注全光切换。 [9–13] 在这方面,多层膜与合金相比最大的区别在于,由于 RE-TM 接触面积减小,且被限制在界面上,因此稀土和过渡金属自旋之间的有效反铁磁交换相互作用较弱。一个较少暴露的方面是结构各向异性对磁各向异性的影响,这种影响是由各向同性合金的层状排列引起的。也就是说,当界面处的对称性被破坏时,结构可以获得对磁各向异性的额外和可控贡献。[14,15] 通过对磁场和泵浦通量进行泵浦探测磁光测量,我们发现我们的多层膜中的激光诱导动力学与已知的
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.