消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
吸收波长(304.681 nm,vac),我们推断 /?(1470°K,0.63ATM)= 40(-19,+48)cm-'atm“'and oa9。FI的值对应于
数据操作、分析和显示 • 算术(+、-、×、/、附加) • 缩放、标准化和基线减法 • 裁剪 • 网格显示、对数/线性刻度 • 2D、3D、轮廓和颜色图 • 文本显示和编辑选项中的数据显示 • 使用非线性最小二乘拟合程序进行完全衰减数据拟合 • 指数重卷积或尾部拟合 • 1-4 个独立的指数衰减时间,固定或作为自由拟合参数 • 移位参数,固定或作为自由拟合参数 • 背景拟合,固定或作为自由拟合参数 • 卡方拟合优度检验 • 加权残差,Durbin-Watson 参数 • 自相关函数 • 各向异性计算 • 提取时间分辨光谱(TRES 数据切片) • 全面的测量和文件属性用于记录保存 • ASCII/CSV 数据输入和输出选项 • 复制和粘贴选项以方便演示和出版 • 可选的高级荧光寿命数据分析包
nist.gov › 文档 PDF 2022年12月24日 — 2022年12月24日 使用现有技术并促进工业和工业领域的技术创新... 标准参考材料的研究领域很广泛。
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。
