1 简介功能性近红外光谱 (fNIRS) 是一种光学技术,可以对脑血液动力学、氧合和代谢进行非侵入性监测和成像,以评估健康和疾病状态下的脑功能。1 近红外光 (波长约 700 − 900 nm) 可穿透生物组织几厘米,因为组织在电磁波谱的这个区域相对透明。放置在头部的源光极发出的光会穿过大脑结构,包括大脑皮层表面,在那里它与组织发生散射和吸收相互作用。部分散射光可以由距离光源几厘米的一个或多个探测器测量,并通过测量多个波长范围内光的衰减来评估组织特性,最显著的是血红蛋白种类 (氧合/脱氧血红蛋白) 的浓度。通过组合源和探测器阵列,现在不仅可以重建这些特性的地形图像,还可以重建断层扫描图像。2 特定脑区内的功能激活会引起功能性充血,从而导致特征性的血流动力学反应功能,血流量增加,氧合血红蛋白水平升高,脱氧血红蛋白浓度降低。3
拓扑材料的特点是具有拓扑非平凡的电子能带结构,从而获得了出色的传输特性。[1–6] 将这些奇异相开发成有用的应用的前景吸引了广泛的努力来识别和分类候选拓扑材料,证据是出现了许多基于电子能带连通性、[7–13] 基于对称性的指标、[7,14–21] 电子填充约束、[7,22,23] 和自旋轨道溢出的理论框架。[24–26] 这些框架有助于预测 8000 多个拓扑非平凡相,[27–34] 这是一片广阔的未开发实验领域。这为开发用于高通量筛选候选材料的互补实验技术提供了强大的动力。当前最先进的技术,如角分辨光发射光谱 (ARPES)、扫描隧道显微镜 (STM) 和
量子物理和计算机科学相交的一个基本问题是计算n个相互作用粒子系统的能量水平。这些是局部汉密尔顿H的特征值,这是一种作用于张量产品h≃(c d)⊗n的共轭 - 对称(Hermitian)线性操作员。局部属性意味着h是术语hη⊗i的总和,其中hη是k = o(1)张量因子的操作员,而i是其余因子上的身份。使用| v |的局部性结构产生了g =(v,e)的HyperGraph g =(v,e) = n,并由M Hyperedgesη∈E索引。根据张量产品空间的尺寸,计算能量水平的标准对角线化程序将需要指数时间。此类别中最著名的问题侧重于计算最低特征值,即基态能量。这概括了计算约束满意度问题的最佳值的问题Max-CSP,但是现在“可变分配”是具有指数级参数的向量。计算最低特征值,直到已知QMA [1](NP的量子类似物)已知为一定的逆多项式准确性。一个主要的开放问题是量子pcp-conture [2],它认为QMA是近似于Hamiltonian H = P
情感解码是使用大脑信号测量方法推断人类情绪状态的推断。这种方法对于开发精神病疗法的新治疗方法至关重要,例如情感神经反馈方案。为了减少训练持续时间并优化临床输出,可以使用独立的志愿者组的数据来训练理想的临床神经反馈,然后再被新患者使用。在这里,我们研究了是否可以使用来自额叶和枕叶区域的功能近红外光谱(FNIRS)信号来实现这种独立的情感解码设计。为此,首先在数据集中对线性判别分析分类器进行了训练(49个参与者,24.65±3.23岁),然后在完全独立的一个(20名参与者,24.00±3.92岁)中进行了测试。在正面与负面(64.50±12.03%,p <0.01)和阴性与中性(68.25±12.97%,p <0.01)的情感状态歧视(68.25±12.97%,p <0.01)之间,发现了类别之间的显着平衡精度。对于一个主动区块,指示志愿者回忆起个人亲切经验,发现正面和中性影响分类的明显精度(71.25±18.02%,p <0.01)。在最后一个情况下,只有三个FNIRS通道足以在中性和积极的情感状态之间折磨。尽管需要进行更多的研究,例如重点关注特征和分类器的更好组合,但我们的结果突出了FNIRS作为独立于主题的情感解码的一种可能的技术,仅使用少数但是具有生物学上相关的特征来达到情绪状态的显着分类精度。
通过将所有混色技术的 3200K 光谱曲线与实际钨源的曲线重叠并进行比较,显然,尽可能多地填充光谱可以更真实地呈现光谱内的色调。
在 PC IV 中,您已经学习了布洛赫方程、拉比振荡和脉冲序列,它们是基于核或电子自旋与无线电波之间的相干相互作用来提取有关物质结构和动力学特性的有用信息的方法。原则上,这些方法可以转移到光谱学领域以达到相同的目的。不幸的是,在光频率下,人们必须处理不同的、更快的松弛过程,这些过程会破坏相干性。例如,在 NMR 中,由于 ν 3 缩放(其中 ν 是发射频率),自发辐射非常慢,以至于它对使自旋系统达到热平衡的贡献可以忽略不计。相反,在光频率下,自发辐射是最重要的退相干源之一。尽管如此,激光源和技术的进步为原子和分子的相干操控提供了大量可能性,如今这些可能性在量子信息科学和飞秒化学等不同领域都有重要应用。
1。红外和拉曼光谱(分为三个部分),由爱德华·布雷姆(Edward G.X射线光谱法,由H. K. Herglotz和L. S. Birks编辑3.质谱法(分为两部分),由小查尔斯·梅里特(Charles Merritt,Jr。)和查尔斯(Charles N. McEwen)编辑4。聚合物的红外和拉曼光谱,H。W. Siesler和K. Hofland-Moritz 5。NMR光谱技术,由Cecil Dybowski和Robert L. Lichter 6。红外微光谱:理论与应用,由Robert G. Messerschmidt和Matthew A. Harthcock编辑。流动原子光谱,由Jose Luis Burguera编辑8。生物材料的质谱法,由Charles N. McEwen和Barbara S. Larsen编辑9.田间解吸质谱法,ltlszi(j pr6kai 10。色谱/傅立叶变换红外光谱及其应用