I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
摘要:拉曼光谱法已成为一种流行的分析工具,因为它能够进行非破坏性探测并提供材料的指纹信息。拉曼光谱领域的进步和应用范围的扩大保证了在正规教育课程中引入该主题。在教育课程中引入拉曼光谱分析有助于学生学习光谱基础知识。此外,组件熟悉和制造培训将帮助学生发展自己的方法来制造和定制用于特定应用的仪器。虽然许多拉曼光谱仪都可以在市场上买到,但高昂的成本使大多数学术机构都买不起。在此,我们描述了一种简单且经济有效的方法来制作一个完全集成的便携式拉曼光谱仪,并解释了一些可以在课堂上使用制造的设备进行的简单实验。关键词:研究生教育/研究、分析化学、演示、物理化学、实验室设备/仪器、定性分析、定量分析、拉曼光谱、光谱学■ 简介
埃德温·亚历克纳尼(Edwin Alexani)的硕士学位论文已得到论文委员会的审查和批准,这是对天体物理科学和技术科学硕士学位的论文要求的满意。
摘要。原始调查光谱仪(OSS)是用于起源的多功能远射光谱仪。在光子背景极限下运行,使用六个对数间隔的光栅模块,以300的分辨能力(R)瞬间覆盖25至588-μm波长范围。每个模块同时至少30与最多100个空间束,从而实现了真实的[三维(3D)]光谱映射。此外,OSS提供了两种高分辨率模式。第一个将长路径傅立叶转换光谱仪(FTS)插入到传入光的一部分中,以提前光栅后端,使R高达43; 000×½λ∕112μm,同时保留了基于光栅的线的灵敏度。第二次与FTS串联扫描Etalon,为100至200-μm的范围提供高达300,000的R。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.1.011017]
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。
月球月球ICECUBE - 肯塔基州莫尔黑德州立大学,以各种形式的水和其他红外光谱仪寻找水。lunah-map - 亚利桑那州亚利桑那州立大学,在陨石坑和其他带有中子光谱仪的月南极的永久阴影区域中创建了近地表氢的高保真地图。omotenashi - 日本发展中国家最小的月球兰德勒(Jaxa),研究月球环境。lunir - 科罗拉多州的洛克希德·马丁(Lockheed Martin),对月球表面进行高级红外成像。
在过去十年中,技术的显著创新和进步已使先进的 FT-IR 光谱仪成功商业化。现代研究级 FT-IR 光谱仪为各种要求极高的实验开辟了新的可能性,这些实验在过去要么极其困难,要么几乎不可能完成。这些实验将红外光谱技术推向了新的极限。作为全球领先的高科技仪器供应商,其客户范围从诺贝尔奖获得者的实验室到初创公司,赛默飞世尔科技有义务提供这本更新的实用指南,其中包含适合先进 FT-IR 光谱最活跃领域的理论深度。本书包含有关研究级赛默飞世尔科技 FT-IR 光谱仪的设计、操作和性能的信息。本书广泛介绍了先进 FT-IR 光谱(尤其是步进扫描 FT-IR)的基本原理和应用。本书介绍的主要应用包括:
1 瑞士西北应用科学与艺术大学 FHNW 工程学院,Bahnhofstrasse 6, 5210 Windisch, Switzerland; andrea.battaglia@fhnw.ch (AFB); muriel.stiefel@fhnw.ch (MZS) 2 欧洲空间研究与技术中心 (ESTEC),欧洲空间局,2201 Noordwijk,荷兰 3 Mullard 空间科学实验室,伦敦大学学院,Holmbury St. Mary,Dorking RH5 6NT,英国 4 加州大学伯克利分校空间科学实验室,7 Gauss Way,伯克利,CA 94708,美国 5 粒子物理和天体物理研究所 (IPA),瑞士苏黎世联邦理工学院 (ETHZ),Wolfgang-Pauli-Strasse 27,8039 苏黎世,瑞士 6 天体粒子与宇宙学,巴黎城大学,CNRS,CEA,F-75013 巴黎,法国 7 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Road,Greenbelt,MD 20771,美国; albert.y.shih@nasa.gov (AYS) 8 波茨坦莱布尼兹天体物理学研究所 (AIP), An der Sternwarte 16, 14482 Potsdam, 德国; awarmuth@aip.de (AW); mverma@aip.de (MV) 9 格拉茨大学物理研究所和 Kanzelhöhe 天文台,Universitätsplatz 5, 8010 Graz, Austria 10 都柏林高等研究院,31 Fitzwilliam Place, Dublin D02 XF86,爱尔兰; peter.gallagher@dias.ie (PTG) 11 格拉斯哥大学物理与天文学院,University Avenue, Glasgow G12 8QQ,UK; iain.hannah@glasgow.ac.uk (IH) 12 诺森比亚大学数学、物理和电气工程系,泰恩河畔纽卡斯尔 NE1 8S,英国 13 捷克科学院天文研究所 (CAS),251 65 Ondˇrejov,捷克共和国; jana.kasparova@asu.cas.cz 14 西肯塔基大学物理与天文学系,Bowling Green, KY 42101,美国 15 图像和数据分析方法 (MIDA),Dipartimento di Matematica,Università di Genova,Via Dodecaneso 35,I-16146 Genova,意大利; piana@dima.unige.it (MP) 16 Centrum Bada´n Kosmicznych, PAN, ul. Bartycka 18a, 00-716 华沙, 波兰; tmrozek@cbk.pan.wroc.pl (TM) 17 Istituto Nazionale di Fisica Nucleare (INFN-Pisa), 56127 Pisa, Italy 18 Institut de Recherche en Astrophysical et Planétologie (IRAP), National Center for Space Studies (CNES), Université Toulouse III, 31062 Toulouse, France 19 物理学加州大学圣克鲁斯分校,1156 High St.,Santa Cruz,CA 95064,USA 20 圣克鲁斯粒子物理研究所,加州大学圣克鲁斯分校,Santa Cruz,1156 High St.,Santa Cruz,CA 95064,USA 21 空间研究和天体物理仪器实验室 (LESIA),CNRS-UMR 8109,Observatoire de Paris,5 Place J.扬森, 92195 默东, 法国; nicole.vilmer@obspm.fr * 通讯地址:daniel.ryan@fhnw.ch