地球同步成像傅里叶变换光谱仪 (GIFTS) 是为 NASA 新千年计划 (NMP) 地球观测-3 (EO-3) 任务开发的。本文讨论了 GIFTS 测量要求以及 GIFTS 传感器为提供所需的系统性能而使用的技术。还介绍了最近完成的仪器校准的初步结果。GIFTS NMP 任务挑战是展示新兴的传感器和数据处理技术,以使用大气成像和高光谱探测方法彻底提高气象观测能力和预报准确性。GIFTS 传感器是一种具有可编程光谱分辨率和空间场景选择的成像 FTS,允许近实时地交换辐射测量精度和大气探测精度以达到区域覆盖。通过使用低温迈克尔逊干涉仪和两个大面积红外焦平面探测器阵列实现系统灵敏度。由于资金限制,GIFTS 传感器模块作为工程演示单元完成,可以升级以获得飞行资格。通过热真空测试和严格的红外校准活动,已成功证明满足下一代地球同步探测要求的能力。
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
摘要。我们使用低成本,紧凑的拉曼光谱仪报告快速鉴定单个细菌。我们证明了60 s的程序足以在600至3300 cm-1的范围内获取全面的拉曼光谱。这次包括将小细菌聚集体的定位,单个个体的比对以及自发的拉曼散射信号收集。小细菌聚集体的快速定位,通常由小于十二个个体组成,是通过在24 mm 2的大型视野上进行镜头成像来实现的。无镜头图像还允许单个细菌与探测束的精确比对,而无需标准显微镜。在532 nm处的34兆瓦连续激光器的拉曼散射光被喂入定制光谱仪(原型龙卷风光谱系统)。由于该光谱仪的高光吞吐量,可接受的积分时间低至10 s。我们在七个细菌物种上总共记录了1200个光谱。使用此数据库和优化的预处理,获得了约90%的分类速率。我们的拉曼光谱仪的速度和敏感性为高通量和无损的实时细菌鉴定测定法铺平了道路。这种紧凑和低成本的技术可以使生物医学,临床诊断和环境应用受益。©2014光学仪器工程师协会(SPIE)[doi:10.1117/1.jbo.19.11.111610]
用于光氧化还原催化。● 开发了用于光氧化反应的新型强吸收铬(III)复合物 ● 构建了用于多光子动力学的双泵探针瞬态吸收光谱仪。● 构建了基于激光的光反应器来研究高强度照明光催化。● 培训研究生使用瞬态吸收光谱仪。● 使用 WordPress 编写研究小组网站(https://castellano.sciences.ncsu.edu/)● 为能源部 EFRC 的 BioLEC 提供光谱和机械专业知识● 指导两名本科生的独立研究
实验列表:(时间:30小时)•通过纽顿的环方法确定钠光的波长•借助光谱仪确定prism的角度•确定prism材料的分散能力,借助光谱仪,通过范围的范围来确定范围范围的范围范围差异•以确定范围的范围差异••范围的范围•差异••范围的范围••范围•范围•范围••share yrimeter a a in trimeter•A a A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A S SNUTITY组成•使用衍射光栅确定激光的波长•使用米歇尔森的干涉仪确定钠源的波长•确定给定光学
2014 年,LASP 与阿联酋穆罕默德·本·拉希德航天中心 (MBRSC) 合作开发了阿联酋火星任务 (EMM)。该实验室与阿联酋管理人员、工程师、科学家和任务运营商合作开发、建造和操作该任务的希望号航天器。LASP 与 MBRSC、亚利桑那州立大学和加州大学伯克利分校的空间科学实验室合作,开发并建造了三种科学仪器:阿联酋火星紫外光谱仪 (EMUS)、阿联酋探测成像仪 (EXI) 和阿联酋火星红外光谱仪 (EMIRS)。EMM 于 2020 年 7 月 19 日从日本发射,并于 2021 年 2 月 9 日进入火星轨道。
太阳是研究粒子加速的得天独厚的地点,粒子加速是整个宇宙中一个基本的天体物理问题。极紫外 (EUV) 包含许多在太阳大气的所有层中形成的窄发射线,其轮廓允许测量等离子体的密度和温度等特性,以及诊断非麦克斯韦粒子分布的存在。唯一的观察方法是从太空进行,因为地球大气会吸收 EUV 辐射。积分场光谱与偏振测量相结合是研究太阳的关键,但目前的 EUV 技术存在局限性:光纤 IFU(积分场单元)的传输率很低,飞行中的效应会影响偏振测量。最好的解决方案似乎是图像切片器。然而,这项技术尚未为 EUV 光谱范围开发。本文探讨了一种新的高效紧凑的积分场光谱仪布局,该布局基于图像切片器的应用,将 IFU 的表面与光谱仪的表面相结合,适用于太空应用。关键词:EUV 光谱、积分场光谱仪、图像切片器、太阳仪器、空间仪器
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
所用仪器/技术技能 • 紫外可见分光光度计和荧光分光光度计用于光谱测量。型号:V-670 Jasco 和 HORIBA Fluromax 荧光光谱仪 • TCSPC 用于荧光寿命测量。型号:ISS 90021。 • FT-IR 光谱仪用于研究元素间的键合。型号:Nicolet-6700。 • PCPDF-WIN 软件用于 PXRD 数据分析。 • 熟悉用于形态学研究的 FESEM-EDX 仪器。型号:JSM-IT500 LA。 • INKSCAPE 和 imagej 软件用于标记和测量从 TEM 获得的纳米颗粒的尺寸。 • 熟悉用于研究热性能的 TGA 和 DSC 仪器。 • 型号:TGA SDST Q600 和 DSC Q20 V24.10。 审稿人期刊