结果:耐力和耐药性运动后的睡眠效率低于对照条件之后。与对照条件相比,耐力运动后的总睡眠时间较低。睡眠光谱分析表明,与对照条件相比,N1睡眠阶段的耐力和抗性练习在N1睡眠阶段导致更大的α功率和N2睡眠阶段的theta功率更大。与对照条件(趋势)相比,耐力运动在N2睡眠阶段导致更大的β功率,在REM睡眠期间更大的α功率和更高的皮质醇水平,并且与阻力运动条件(显着)相比。耐药性运动在N2睡眠阶段导致的β功率低于控制状态,皮质醇水平低于耐力运动状况。
摘要。使用R波之间的SD(R-R间隔),R-R Inter-Val直方图,光谱分析和POINCARC POINCARC绘图,使用24-H时期的RAMB lave posential R Wife 在12例先天性中央中央次数不足综合征(CCHS)以及年龄和性别匹配的对照中评估了心率变异性。 CCH患者的平均心率为103.3 F 17.7 SD,对照组为98.8 F 21.6 SD(P> 0.5,NS)。 R-R间隔的SD分析在两组中都显示出相似的结果(CCHS 102.2 F 36.0 ms与对照126.1 F 43.3 ms; P> 0.1,NS)。 光谱分析表明,对于在安静的睡眠和清醒中采样的类似时期,低频带与高频频段光谱功率的比率增加了,在睡眠期间,有12例CCH患者中有11例增加了,而这些比率的比率均在所有对照中始终降低。 在清醒期间,在CCH和对照组的患者中,低频带与高频带光谱功率的比率相似。 繁殖图显示,CCHS患者的心率较慢(XZ = 24.0; p <0.000001)显着降低了Beat-Beat变化。 CCHS中点的点散射很容易与对照区分开。 所有CCHS患者均通过一项或多项措施均表现出干扰的变异性。 瞬间心率变异性的变化表明,除了通气控制损失外,CCHS患者还表现出自主神经系统心脏控制的功能障碍。 (Pediafr Res 31:291-296,1992)在12例先天性中央中央次数不足综合征(CCHS)以及年龄和性别匹配的对照中评估了心率变异性。CCH患者的平均心率为103.3 F 17.7 SD,对照组为98.8 F 21.6 SD(P> 0.5,NS)。R-R间隔的SD分析在两组中都显示出相似的结果(CCHS 102.2 F 36.0 ms与对照126.1 F 43.3 ms; P> 0.1,NS)。光谱分析表明,对于在安静的睡眠和清醒中采样的类似时期,低频带与高频频段光谱功率的比率增加了,在睡眠期间,有12例CCH患者中有11例增加了,而这些比率的比率均在所有对照中始终降低。在清醒期间,在CCH和对照组的患者中,低频带与高频带光谱功率的比率相似。繁殖图显示,CCHS患者的心率较慢(XZ = 24.0; p <0.000001)显着降低了Beat-Beat变化。CCHS中点的点散射很容易与对照区分开。所有CCHS患者均通过一项或多项措施均表现出干扰的变异性。瞬间心率变异性的变化表明,除了通气控制损失外,CCHS患者还表现出自主神经系统心脏控制的功能障碍。(Pediafr Res 31:291-296,1992)
解决方案处理的2D材料对其可扩展应用有望。但是,通过离散网络通过离散网络的解决方案处理的纳米量和较差的渗透性传导的随机,零散的性质限制了启用设备的性能。为了克服该问题,通过Stark效应报告了解决方案处理的2D材料的传导调节。以液相去角质的钼二硫化(MOS 2)为例,从界面界面的局部领域证明了以> 10 5为> 10 5的非线性传导切换(VDF-TRFE)。通过密度功能理论的计算以及原位拉曼散射和光致发光光谱分析,该调制是由溶液处理的MOS 2中的电荷重新分布引起的。超过MOS 2,可以显示其他溶液处理的2D材料和低维材料的有效。调制可以打开其电子设备应用,例如,薄膜非线性电子和非挥发性记忆。
高光谱摄像机是精确农业,生物多样性监测和生态研究的关键促进技术。因此,这些应用程序助长了对在这种环境中广泛部署的设备的日益增长的需求。当前的高光谱摄像机需要在后期处理上进行大量投资,并且很少允许进行直播评估。在这里,我们介绍了一个新型的高光谱摄像机,该相机结合了活光谱数据和高分辨率图像。此相机适合与机器人技术和自动监控系统集成。我们探索了该相机用于应用程序的实用性,包括叶绿素检测和与植物健康有关的光谱指数显示。我们讨论了这种新型技术和相关的高光谱分析方法的性能,以支持英国Wytham Woods的草地栖息地的生态研究。
短脉冲激光-固体相互作用为研究复杂的高能量密度物质提供了独特的平台。我们首次展示了固体密度微米级 keV 等离子体在高达 2 × 10 21 W/cm 2 的强度下被高对比度、400 nm 波长激光均匀加热的现象。X 射线发射的高分辨率光谱分析表明,在 1 µ m 的深度内均匀加热至 3.0 keV。粒子内模拟表明产生了均匀加热的 keV 等离子体,深度达 2 µ m。靶内深处的显著体积加热和高度电离离子的存在归因于少数 MeV 热电子被捕获并在靶鞘场内进行回流。这些条件使得能够区分高能量密度环境中电离势降低的原子物理模型。
本研究包括 47 个断裂的 Ni-Ti 锉,这些锉位于根尖附近(根尖三分之一处)的弯曲部分,弯曲角度大于 15 度。Nd:YAP 激光的功率设置为 3 瓦,每脉冲 300 毫焦耳。采用 200 微米光纤,以 10 赫兹的脉冲模式运行,脉冲持续时间为 150 微米,能量密度为每秒 955.41 焦耳/厘米²。这些参数之前已验证过安全性。在整个过程中,激光光纤都放置在断裂锉附近。成功的定义为完全移除或绕过器械,而失败包括部分绕过、未绕过或侧向穿孔。使用扫描电子显微镜 (SEM) 来评估激光照射导致的牙本质壁的任何物理变化。采用能量色散X射线(EDX)光谱分析激光照射后牙本质管壁的化学成分,并计算可进行旁路手术时平均旁路时间。
摘要 - IGBT在各种电力电子应用中扮演至关重要的角色,要求长时间的可靠性。了解其故障机制对于制造商和工程师至关重要。这项研究通过将IGBT降解(尤其是死亡氧化物污染和栅极氧化物污染)与进行的电磁(EM)扰动相关联,以解决差距。使用功率循环系统在600V,16A IGBT上进行加速衰老,揭示了静态和动态参数的显着变化。切换瞬变显示出归因于经验丰富的降解的转弯速度放缓。实验设置证明了降解,切换瞬变(尤其是收集器电流(I C)关闭)之间的直接联系,并减少了执行的EM扰动。关键字 - IGBT,模具降解,闸门氧化降解,加速衰老,IGBTS的信号光谱分析,进行了EM发射。
摘要:以原始形式和含有碳纳米管(CNT)或Fe 2 O 3纳米颗粒(NP)(NPS)的超高分子量聚乙烯(UHMWPE)的薄薄片。CNT和Fe 2 O 3 NP的重量百分比在0.01%至1%之间。通过传输和扫描电子显微镜以及通过能量分散X射线光谱分析(EDS)来确认UHMWPE中CNT和Fe 2 O 3 NP的存在。使用衰减的总反应傅立叶转化红外(ATR-FTIR)光谱和UV-VIS吸收光谱光谱光谱光谱光谱法研究了嵌入式纳米结构对UHMWPE样品的影响。ATR-FTIR光谱显示了UHMWPE,CNTS和Fe 2 O 3的特征。关于光学性能,无论嵌入纳米结构的类型如何,都观察到光吸收的增加。从光吸收光谱中确定允许的直接光能差距值:在这两种情况下,它都随着CNT或Fe 2 O 3 NP浓度的增加而降低。将提出和讨论获得的结果。
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。