超分辨率(SR)的长期挑战是如何在保持语义相干性的同时有效地增强低分辨率(LR)图像的高频细节。这在经常在低功率设备上部署的SR模型的实际应用中尤为重要。为了解决此问题,我们提出了一个具有多深度分支模块(MDBM)的创新不对称的SR架构。这些MDBM包含不同深度的分支,旨在同时有效地捕获高频和低频信息。MDBM的层次结构允许更深的分支在浅层分支的上下文指导下逐渐积累细粒的本地细节。我们使用特征图来可视化这个过程,并使用拟议的新型傅立叶光谱分析方法进一步证明了该设计的合理性和有效性。此外,我们的模型比现有分支网络在分支之间表现出更明显的光谱差异。这表明MDBM降低了冗余,并提供了一种更有效的方法来集成高频和低频信息。各种数据集上的广泛定性和定量评估表明,我们的模型可以生成结构一致且视觉上现实的HR图像。它以非常快的推理速度实现最新的(SOTA)结果。我们的代码可在https://github.com/thy960112/mdbn上找到。
多视图无监督的特征选择(MUFS)最近引起了相当大的关注,可以从原始的多视图数据中选择紧凑的代表性特征子集。尽管有希望的初步性能,但大多数以前的MUFS方法都无法探讨多视图数据的歧视能力。此外,他们通常使用光谱分析来维持几何结构,这将不可避免地增加参数选择的难度。为了解决这些问题,我们提出了一种新颖的MUFS方法,称为基于结构正规化的歧视性多视图无监督特征选择(SDFS)。具体来说,我们从不同视图中计算样本空间的相似性矩阵,并自动加权每个视图特定图表以学习共识相似性图,其中这两种类型的图形可以相互促进。此外,我们将学习的潜在表示为群集指标,并在没有引入其他参数的情况下采用图形正则化来维护数据的几何结构。此外,开发了具有理论收敛属性的简单而有效的迭代更新算法。在几个基准数据集上进行的广泛实验验证了该设计的模型是否优于几种最新的MUFS模型。©2023 Elsevier B.V.保留所有权利。
“能量通量的概念。”三种传热模式:传导、对流和辐射。传导和对流之间的耦合(现象学方法和传热系数的引入)。“稳态条件下和固定系统的稳态能量平衡。”稳态热传导的线性模型:热阻和热导率、翅片的模型和近似、理想和无限翅片的特殊情况。”不透明体和透明介质的概念。光谱和方向强度以及辐射通量。辐射通量的第一个表达式。”涉及辐射通量的边界条件。 “平衡辐射。光谱和方向吸收率、反射率和发射率。发射、吸收和辐射通量。辐射传输的简单模型。 “非稳定传导(热扩散现象)的物理学;特征时间和长度。维度分析。傅立叶数和毕奥数的物理解释和应用。半无限壁模型(或短时响应模型)。热信号的光谱分析。固定频率下的扩散现象退化为传播。有限系统的建模。 “热强制对流的维度方法。机械和热边界层的定性概念。雷诺数、普朗特数和努塞尔特数。外部和内部对流的经典方法(仅限于充分发展的状态)。层流-湍流过渡。水力直径的概念。
纳米 - 修复方法涉及土著微生物与纳米颗粒之间的协同相互作用,为废水处理提供了一种负担得起的,环境和有益的解决方案。在此处制备了环境良性,eichhornia crassipes介导的绿色合成氧化铁纳米颗粒(GS -IONP)。使用不同的光谱分析正确表征了准备的GS-IONP。此外,港口说,埃及港口的水质处理单元从位于天然气设施中的废水处理单元系统地分离了细菌微生物组,并在营养琼脂培养基上生长。在不同的间隔期间研究了GS-IONP对细菌群落的增长增长效应。采用细菌联盟对原油的生物修复活性。结果数据在实验上象征着细菌联盟在7.0的pH下非常稳定,温度为37.0°C(优化条件)。此外,细菌联盟的生长与GS-IONPS的浓度成正比至最佳剂量为0.04 g。与对照样品(未处理的GS-IONPS样品)相比,COD,BOD和TOC的去除%分别提高了74.76%,77.17%和85.44%(例如,GS-IONPS 0.04 g)。总体而言,本研究说明了使用碳氢化合物降解的细菌联盟净化原油废水的未来派理性平台的充分观点。
电子带结构,尤其是导带尾部处的缺陷状态,主导电子传输和在极高的电场下介电材料的电降解。然而,由于在检测到极高的电场的电传导时,即介电的挑战(即预损伤),介电带中的电子带结构几乎没有得到很好的研究。在这项工作中,通过现场预击传导测量方法探测聚合物电介质纤维的电子带结构,并与太空电荷限制 - 电流光谱分析结合使用。根据聚合物电介质中的特定形态学障碍,观察到具有不同陷阱水平的导带处的缺陷状态的指数分布,实验缺陷态也表明,与密度函数理论的状态密度相关。这项工作中所证明的方法桥接了分子结构确定的电子带结构和宏电导行为,并高度改进了对控制电崩溃的材料特性的高度改进,并为指导现有材料的修改以及对高电气纤维应用的新型材料的探索铺平了一种方式。
摘要:目前硅及硅基复合材料在微电子及太阳能器件中得到广泛应用,同时随着锂离子电池容量的不断增大,对硅的纳米纤维及各种颗粒形貌提出了更高的要求。本文研究了低氟KCl–K 2 SiF 6 和KCl–K 2 SiF 6 –SiO 2 熔体电解生产纳米硅,在恒电位电解条件下(阴极过电压分别为0.1、0.15、0.25 V vs.准参比电极电位),研究了SiO 2 添加对电解硅沉积物形貌和成分的影响。将所得硅沉积物从电解液残渣中分离出来,经扫描电镜和光谱分析,制备锂离子电池复合Si/C负极,采用恒电流循环法测量所制备负极半电池的能量特性。循环表明,基于由 KCl–K 2 SiF 6 –SiO 2 熔体合成的硅的 Si/C 复合材料具有更好的容量保持率和更高的库仑效率。在 200 mA · g − 1 下进行 15 次循环后,在 0.15 V 过电压下获得的材料显示容量为 850 mAh · g − 1 。
在工作中研究了2,2' - [乙烷-1,2dylbis(oxy)]二苯甲甲醛(N),硫代甲苯二硫酸盐配体(W)及其金属配合物在工作中。通过在DMF培养基中反应水杨醛和碳酸钠,在两个阶段完成合成反应,然后加入1,2-二溴乙烷当量。通过混合氢氮和CS 2,合成了W。配体(W)是通过将乙醇金属氯化物溶液添加到金属离子集合中产生的。之后,将配体N引入并溶解。在(0.5 m n:w)摩尔比以创建五种新型化合物的DMF中。使用物理化学技术(FT-IR,电子光谱分析,质量,¹-NMR和13 C-NMR光谱,元素分析,磁敏感性和摩尔浓度),验证合成化合物的孤立组成实体(电导率)。基于表征数据,形成了具有化学式[MLCL 2]的八面体化合物。当M = CO(LL),Ni(LL),Cu(LL),Zn(LL)和CD(LL)(LL)时,将标题成分(配体和复合物)的抗菌作用评估为抗氧化剂。结果表明,相对于L.
摘要:登革热病毒(DENV)是一种属于Flaviviridae家族和Flavivivirus属的单链RNA病毒。登革热病毒感染可引起登革热出血热(DD),可能导致登革热出血热(DHF)。这项研究的主要目的是合成2'-甲氧基黄酮(2F)及其衍生物(TF2),并预测这些分子作为登革热病毒DENV-2 NS2B/NS3丝氨酸蛋白酶的结合取向。合成是使用搅拌方法进行的,它是从2'-羟基-2-甲氧基酮和过氧化氢作为起始材料开始的。2'-甲氧基黄酮(2F)以白色粉末的形式获得,产量为71.85%。此外,使用反流方法反应的1-溴-3-氯丙烷的化合物2F,以获得82.32%的白色晶体的形式获得化合物TF2。使用光谱分析i证实了合成化合物的分子结构。 e。 UV,FT-IR,1 H-NMR和13 C-NMR。基于分子对接和密度功能理论(DFT),证明化合物TF2可以用作潜在的登革热DEN2 NS2B/NS3丝氨酸蛋白酶蛋白酶抑制剂。这种策略是发现新药的早期阶段,然后可以用作登革热病毒抑制剂。
摘要 本文介绍了一种由太阳帆推进的小型卫星任务概念,用于拦截并可能与新发现的瞬时星际物体 (ISO) 会合。该任务概念源自一项技术演示任务的提案,该任务旨在高速离开太阳系,最终到达太阳引力透镜的焦点区域。ISO 任务概念是将太阳帆飞向围绕太阳的保持轨道,当 ISO 轨道得到确认后,让帆飞行器达到超过 6 AU/年的逃逸速度。这将允许对新的 ISO 发现做出快速反应,并在距太阳 10 AU 以内进行拦截。两种新的行星际技术可用于实现此类任务:i) 行星际小型卫星,例如 MarCO 任务所展示的卫星,以及 ii) 太阳帆,例如 LightSail 和 IKAROS 任务所展示的卫星,以及为 NEA Scout 和 Solar Cruiser 任务开发的卫星。当前的技术工作表明,在十年内,此类任务已经可以飞行并到达穿越太阳系的 ISO。它可能使首次接触 ISO 时能够进行成像和光谱分析,测量尺寸和质量,从而可能提供有关该物体起源和成分的独特信息。可以使用类似的方法返回样本。
在环境环境条件下(20°C,大气空气,0.1 MPa)实现生物质衍生的原料的定量转换是化学过程可持续性的关键里程碑。在此,在环境环境条件下实现了葡萄糖为葡萄糖的定量转化,而没有任何添加剂使用PT-ZN金属粒子间支撑的生物炭催化剂,该催化剂是通过直接的单杆溶液溶液反应与乙基溶剂溶液的直接稻草(PT-ZN/Strowc)制备的。光谱分析验证了PT-ZN金属合金的形成,并证实了强烈的电子金属支持相互作用。The Pt-Zn/strawC catalyst (Pt:Zn molar ratio of 1:6) was highly selective for the conversion of glucose to gluconic acid, whereas yields as high as 99.9% (98.9% gluconic acid, 1.0% glucaric acid) were reached at 20 o C under base-free and additive-free conditions.同位素测量和密度功能理论揭示了PT-ZN合金中的协同相互作用,其中合金倾向于将葡萄糖和活性O 2吸收到超氧化物自由基中(O 2·)。这项工作展示了一种化学催化方法,该方法适用于环境条件,并为木质纤维素生物量可持续转化为化学产品提供了新的途径。