摘要植物层或植物叶表面代表了一个大小相当大的微生物生态系统,具有非凡的生物多样性和巨大的潜力,可在生物技术,农业,医学和其他地方发现新产品,工具和应用。这种迷你审查强调了植物圈的应用微生物学是一种原始的研究领域,该领域与基因,基因产物,自然化合物和特征有关,这些基因,自然化合物和特征是浮力层特异性适应和服务,这些适应和服务具有当前或未来创新的商业和经济价值。的例子包括植物生长和抑制疾病的植物杆菌,支持人类健康的益生菌和发酵食品,以及对空气生污染物,残留农药或塑料造成叶面污染的微生物。腓骨微生物可将植物生物量转化为堆肥,可再生能量,动物饲料或纤维。他们生产食品,例如增稠剂和糖替代品,工业级生物表面活性剂,新型抗生素和癌症药物,以及用作食品添加剂或冷冻剂的酶。此外,基于DNA序列的基于叶片相关的微生物群落的新发展允许在食品安全和保障的背景下进行监视方法,例如,在叶状蔬菜上检测到肠道蔬菜,预测植物性疾病暴发,并拦截植物疾病爆发,并拦截植物性植物病原体和对国内交易商品的病原体和病虫。
Refka Ghodhbani 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 | 突尼斯莫纳斯提尔大学科学学院电子与微电子实验室 refka.ghodhbani@nbu.edu.sa(通讯作者) Taoufik Saidani 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 taoufik.saidan@nbu.edu.sa Layla Horrigue 突尼斯莫纳斯提尔大学科学学院电子与微电子实验室 layla.k-12@hotmail.com Asaad M. Algarni 沙特阿拉伯北部边境大学计算机科学系、计算机与信息技术学院 asaad.algarni@nbu.edu.sa Muteb Alshammari 沙特阿拉伯北部边境大学计算机与信息技术学院信息技术系 muteb.alshammari@nbu.edu.sa
心脏病是世界各地死亡的最大原因。心脏声音的诊断是诊断(1)的心脏病的有效方法。使用计算机技术自动听诊节省了医生的时间和工作。许多论文使用几种方法讨论了对心脏声音的分析和识别。Shamsuddin N等。(2005)(2)使用muntilayer feed向前神经网络进行分类心脏声音。他们获得了11种心脏病的正确分类的100%。Garzon JJ等人(2008)(3)使用支持向量回归来检测杂音。他们获得了正常和病理心动图(PCG)信号精度的97.85%。Maglogiannisa I和HisColleagues(2009)(4)使用小波和SVM对心脏声音进行分类。Yana Z等。 al。 (2010)(5)Yana Z等。al。(2010)(5)
功能活性与大脑结构接线之间关系之间关系的数学建模很大程度上是使用具有区域性参数的非线性和生物物理详细的数学模型进行的。这种方法为我们提供了丰富的多稳态动力学曲目,但大脑可以显示,但在计算上是要求的。此外,尽管微观水平上的神经元动力学是非线性和混乱的,但尚不清楚是否需要此类详细的非线性模型来捕获新兴的中介体(区域人口合奏)和宏观(整个大脑)行为,这在很大程度上是确定性的,并且在很大程度上是确定性的和可重复的。的确,基于光谱图理论的最新建模工作表明,没有区域变化参数的分析模型可以捕获经验磁性频率光谱以及Alpha和Beta频段的空间模式。在这项工作中,我们展示了基于基于静止健康受试者的磁脑摄影记录获得的频谱的改进,基于频谱理论的模型。我们根据经典的神经质量模型重新重新制定了光谱图理论模型,因此提供了更具生物解释的参数,尤其是在局部规模上。我们证明,在比较模型频谱的光谱相关性并从磁脑摄影记录中获得的光谱相关性时,该模型的性能优于原始模型。该模型在预测经验α和β频带的空间模式方面也表现出色。
摘要 — 高级高光谱数据分析软件 (AVHYAS) 插件是一个基于 Python-3 的量子 GIS (QGIS) 插件,旨在处理和分析高光谱 (Hx) 图像。从 1.0 版开始,AVHYAS 是一个免费的开源平台,用于在研究学者、科学家和潜在最终用户之间共享和分发 Hx 数据分析方法。它旨在保证现在和将来 Hx 机载或星载传感器的充分利用,并提供用于 Hx 数据处理的高级算法。该软件可免费使用,并提供一系列基本和高级工具,例如大气校正(用于机载 AVIRIS-NG 图像)、标准处理工具以及用于 Hx 数据分析的强大的机器学习和深度学习接口。本文概述了 AVHYAS 插件,解释了典型的工作流程和用例,以使其成为高光谱遥感应用的常用平台。索引词 —AVHYAS、QGIS、Python 3.0、高光谱数据分析、分类、深度学习、分离、融合、回归、目标检测
摘要 —卷积神经网络(CNN)在高光谱图像表示方面表现出色,并在高光谱图像分类中取得了良好的效果。然而,传统的 CNN 模型只能对具有固定大小和权重的规则方形图像区域进行卷积,因此,它们不能普遍适应具有各种对象分布和几何外观的不同局部区域。因此,它们的分类性能还有待提高,特别是在类边界方面。为了弥补这一缺点,我们考虑采用最近提出的图卷积网络(GCN)进行高光谱图像分类,因为它可以对任意结构的非欧几里得数据进行卷积,适用于由图拓扑信息表示的不规则图像区域。与常用的在固定图上工作的 GCN 模型不同,我们使图能够动态更新
已在无人机中实施(Zarco-Tejada、González-Dugo 和 Berni,2012 年;Hruska 等人,2012 年;Büttner 和 Röser,2014 年;Suomalainen 等人,2014 年;Lucieer 等人,2014 年)。以 2D 帧格式原理运行的小型化高光谱成像仪是一种捕获光谱特征的新颖传感方法(Mäkynen 等人,2011 年;Saari 等人,2013 年;Honkavaara 等人,2013 年;Näsi 等人,2015 年;Aasen 等人,2015 年)。 2015)。 2D 帧格式由于其刚性的矩形几何形状和多个重叠图像而提供了强大的几何和辐射约束(Honkavaara 等人,2012 年)。该框架为无人机遥感提供了有趣的可能性,因为它可以产生比推扫式扫描,使用更少的地面控制点 (GCP) 和较低等级的惯性导航系统 (INS)。
农作物产量需要以可持续的方式增加,以满足日益增长的全球粮食需求。为了确定具有高产潜力的农作物品种,植物科学家和育种家在数年间评估了多个地点数百个品系的表现。为了促进选择先进品种的过程,本研究开发了一个自动化框架。高光谱相机安装在无人机上,以收集具有高空间和光谱分辨率的航空图像。在连续两个生长季从三个实验产量田拍摄航空图像,这些田地由数百个实验地块(1×2.4 米)组成,每个实验地块包含一个小麦品系。联合收割机收割了上千块小麦地块的谷物,称重并记录为地面真实数据。为了利用高空间分辨率并研究地块内的产量变化,通过整合图像处理技术和光谱混合分析与专家领域知识,将地块图像划分为子地块。随后,使用分层抽样将子地块数据集划分为训练集、验证集和测试集。从每个子地块提取特征后,对深度神经网络进行产量估计训练。在子地块规模上预测测试数据集产量的决定系数为 0.79,均方根误差为 5.90 克。除了提供对子地块规模产量变化的见解外,所提出的框架还可以促进高通量产量表型分析过程,作为一种有价值的决策支持工具。它提供了以下可能性:(i)远程目视检查地块,(ii)研究作物密度对产量的影响,以及(iii)优化地块大小以每年在专用田地中调查更多线路。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。