1. PH671 电子学 2. PH672 仪器仪表 3. PH673 数值方法 4. PH674 纳米科学与技术 5. PH675 原子与分子光谱学 6. PH611 数字信号与图像处理 7. PH613 工程材料基础 8. PH676 高等数学物理 9. PH677 波导与现代光学 10. PH678 天体物理学与宇宙学 11. PH679 太阳能光伏技术 12. PH680 计算技术 13. PH681 高级电磁理论14. PH682 无损检测 15. PH683 光纤传感器 16. PH684 量子电子学和激光应用 17. PH685 传感器和换能器 18. PH686 高级统计方法和相变 19. PH687 薄膜物理和技术 20. PH688 半导体物理 21. PH689 磁特性和超导材料 22. PH690 量子计算和量子信息 23. PH691 微机电系统 24. PH692碳纳米材料及其应用 25. PH 693 纳米流体力学和特性 26. PH 694 先进电子材料与设备 27. PH 695 纳米光子学 28. PH 618 数据分析简介
本介绍性文章将早期半导体检测器向现代RA Diation Imaging Instruments的演变(现在具有数百万个信号处理细胞)的发展方面,利用了硅纳米技术的潜力。MEDIPIX和TIMEPIX组件是此演变中的主要移动器之一。可以使用单个电离粒子和光子检测矩阵中检测矩阵中的影响来研究这些基本量子本身,或者允许人们可视化辐射下对象的各种特征。x-射线成像可能是后者最常用的模态,新成像器可以处理每个事件x - 光子以获取具有有关对象的结构和组成的其他信息的图像。可以利用能量特异性X射线吸收来成像原子分布。出现了无数其他应用程序。为例,在分子光谱学中,每个像素中的亚纳秒时序可以实时传递,以单分子的飞行时间来实时映射样品的分子组成,与经典的凝胶电泳相比,革命是革命。参考文献和一些个人印象可在超过50年的时间内照亮辐射检测和成像。推断和对未来发展的狂野猜测总结了这篇文章。
原子蒸汽是精密计量的关键平台,但在其最简单的实现方式——热蒸汽中,由于原子的随机和各向同性的热运动,固有的光学共振会被加宽。通过构造具有窄发射孔的热蒸汽容器,可以修改速度分布以创建定向原子束。1 然后,这些原子束可以依次与一系列光场或相互作用区相互作用,最终实现对原子内部状态的精确控制。这对于光学频率标准和精密光谱学很有用 2、3,也可能提供构建简单飞行量子比特平台的方法。4 此外,芯片上的原子束可用作紧凑的定向源来加载磁光阱 (MOT),同时尽量减少环境压力的增加。5 我们应用微加工技术对硅进行微观结构化,以确定性地控制连接腔之间的 Rb 流动。我们描述了一种测量控制这些微加工结构中原子蒸气通量的实验参数的方法,目的是创建一个等效电路模型。该工具包将提供一个简单的平台,用于在芯片上创建具有可控压力分布的原子束,并彻底了解吸附效应和伪弹道轨迹对所得原子束的影响。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估计散装和阴道胶囊中硝酸硝酸盐的估计。芬太纳唑硝酸盐是一种抗真菌药物,它完全不溶于水。甲醇用作溶剂溶解芬太纳唑硝酸盐的溶解度。溶解在甲醇中时,发现硝酸芬太纳唑的最大吸收在波长253 nm处。这些方法基于在253nm处的吸光度测量和曲线下面积的整合,以分析242-262 nm波长范围内的芬康唑硝酸盐。在两种方法的相关系数r 2> 0.99的5-30 µg/ml浓度范围内,药物遵循线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。将所提出的方法用于阴道胶囊中硝酸硝酸盐的定性和定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和阴道胶囊中硝酸盐的常规分析。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
全世界从事化学物理研究的研究人员都知道 Vladislav Voevodsky 院士的名字。他的努力和才华使得气体链式支链反应、烃类裂解反应以及自由基和原子的非均相反应的研究取得了许多关键进展。Voevodsky 院士是最早认识到磁共振技术在研究自由基和其他顺磁性粒子方面的潜力的人之一。他和他的同事将 EPR 技术发展成为一种研究化学反应的强大实验方法,创立了一个新的科学领域 — — 化学放射光谱学。这项工作反过来又导致了许多基本化学现象研究的突破,包括化学反应的自由基机制、电子离域和转移、固体和液体物质辐解中的基本行为、光化学和光生物过程的机制以及非均相催化。 Voevodsky 院士是化学动力学和燃烧研究所(俄罗斯新西伯利亚)和新西伯利亚国立大学自然科学系的创始人之一。多年来,他一直担任该系主任。他培养并激励了一群世界知名的科学家,他们至今仍在从事化学物理学研究。他的学生对化学动力学和化学物理学的发展产生了重大影响——这是一门描述
中海区域中的光谱学是必不可少的工具,用于识别各种领域的分子类型,包括物理,化学和医学科学。然而,传统的红外光源,探测器和黑体辐射的噪声一直是小型化和较高敏感性的红外光谱仪的障碍。量子量表镜检查,whusesvisibleandinfraredphotonpairsinquantandandstate,将注意力作为一种新的感应技术,可在可见范围内使用检测器进行红外光谱。然而,常规量子纠缠光源的带宽最多为1 µm或更小,这阻碍了宽带微调,这在光谱应用中很重要。在这里,我们已经意识到了一个超宽带的纠缠状状态,可见的 - infrared光子,波长为2至5 µm,并利用了特殊设计的非线性晶体,内部具有chi骨的螺栓结构。此外,我们使用超宽带量子纠缠的光子构建了非线性量子干涉仪,并使用硅制成的可见检测器实现了无机和有机材料的宽带红外光谱。我们的结果表明,量子红外光谱可以实现超宽带光谱测量值,并为使用量子纠缠光子的高度敏感,超紧凑的红外表量表铺平了道路。©2024 Optica Publishing Group根据Optica Open Access Publishing协议的条款
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估算大量和药物剂型的多x基胺琥珀酸酯。多克利胺琥珀酸酯是具有明显镇静特性的组胺H1拮抗剂。它用于过敏和抗精性,抗气和催眠。多克利胺也已在兽医应用中施用,以前用于帕金森氏症,蒸馏水被用作溶剂溶解毒胺琥珀酸酯的溶解度。当溶解在蒸馏水中时,发现多克利胺琥珀酸酯的最大吸收在波长260nm处。这些方法基于在260nm处的吸光度测量和曲线下面积的整合,以分析251.20-267.20 nm的波长范围内的多x胺琥珀酸酯。在10-60 µg/ml的浓度范围内,与相关系数r 2> 0.99的浓度范围保持线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。提出的方法用于定性和片剂中多克莱明琥珀酸酯的定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和药剂片的多x基胺的常规分析。