2025年3月13日组织:京都大学系:集成辐射与核科学的投影研究,综合辐射与核科学研究所,研究领域:材料科学,量子光学,开发光谱法。核心任务:使用核方法(例如摩斯鲍尔光谱和相关光谱法的开发)对高级材料科学和量子光学的调查。变更范围:京都大学的运作(教育,研究和行政管理)。工作职位:助理教授(1位)资格和必需技能:成功的候选人应获得
这项全面的评论探讨了人工智能(AI)对医院管理的变革性影响,研究其应用,挑战和未来趋势。将AI纳入行政职能,临床操作和患者参与度具有巨大的希望,以提高效率,优化资源分配和革新患者护理。但是,这种演变伴随着需要仔细导航的道德,法律和运营考虑因素。评论强调了关键发现,强调了对医院管理的未来的影响。它要求采取一种积极主动的方法,敦促利益相关者对教育进行投资,优先考虑道德准则,促进合作,倡导周到的监管,并接受创新文化。医疗保健行业可以通过集体行动成功地导航这个变革性时代,以确保AI有助于更有效,更容易获得的以患者为中心的医疗保健。
注意力缺陷多动障碍 (ADHD) 是儿童期最常见的精神健康障碍之一。最近一项对 100 多项研究的荟萃分析估计,ADHD 的全球患病率约为 3.4–5.3% ( 1 )。在中国,一项全国精神疾病调查显示,学龄儿童 ADHD 的患病率为 10.2%,而男孩的患病率相对较高 ( 2 )。典型症状是注意力不集中、多动和冲动,这些症状与年龄不相符,并且常常导致他们在以后的生活中学习成绩、工作效率和社交技能受损 ( 3 , 4 )。从实证研究来看,ADHD 的表型在人群中存在差异,可能与大脑发育过程中的遗传和神经因素有关,包括生命早期接触毒素和缺乏社会经济资源 ( 4 )。ADHD 是各种执行功能缺陷的结果; ADHD 的主要特征是缺乏行为抑制,即抑制不相关或干扰信息和冲动的能力,这会导致其他执行功能(如工作记忆和自我调节)进一步受损(3)。尽管行为异常,但在 ADHD 患者中通常可以观察到大脑的结构和功能变化,例如白质体积减少、灰质体积变小、双侧额叶和右扣带皮层局部变薄,以及功能连接减少(5,6)。近年来,脑成像技术(如磁共振成像、MRI)的快速发展使得人们可以更近距离地观察 ADHD 患者的大脑。例如,最近的研究表明,ADHD 的特征是神经网络中存在多种结构和功能异常,包括额顶颞、额小脑甚至前部边缘网络的改变(5-7)。 MRI,尤其是功能性MRI(fMRI),已广泛应用于基础医学和临床研究以及临床实践,以研究大脑的结构和功能。然而,对于儿童,尤其是非常年幼的儿童来说,这是一个巨大的挑战,因为他们必须在扫描期间长时间呆在封闭而黑暗的空间中。他们需要保持静止,因为如果他们移动,成像就不准确。此外,MRI、功能性MRI和静息MRI的成本很高。为了应对这些方法上的限制,功能性近红外光谱(fNIRS)在二十年前被引入科学界。它是一种基于光学的测量神经功能的工具。它的优点是不易受头部运动伪影的影响,并且具有非侵入式采集环境和良好的便携性(8)。fNIRS经常用于探索与ADHD相关的认知的神经基础,例如执行功能,面部表情识别和情绪调节(8-11)。静息状态功能性近红外光谱(rs-fNIRS)成像是一种自然的成像范式,与任务状态 fNIRS 相比具有许多优势(12-14)。rs-fNIRS 操作简单,在临床实践中易于操作,特别是对于难以保持稳定且倾向于移动的儿科患者。rs-fNIRS 技术可以揭示大脑网络在正常发育和精神病理状态方面的变化(12、13、15、16)。
在研究(电)化学反应时,电化学和光谱技术的组合会产生互补信息。电化学技术提供了精确的定量,并具有以较低零件(ppm,mg/l)浓度范围或涉及亚单层覆盖率的表面过程分析解决方案的可能性。电化学方法的缺点是它们为目标反应提供了有限的特异性。信息是一维的,因为研究人员可以在给定的潜力下监视电子的流量,但是很难将当前信号归因于单个过程。光谱法(如拉曼光谱法)提供了分子信息,并有可能监测化学过程的发生。
当前使用许多方法来检测或识别爆炸物,包括成像(例如X-射线)和化学识别(例如,离子迁移率光谱法)。但是,广泛的威胁方案创造了需要其他方法。激光 - 基于基于的检测技术,因为它们具有多种威胁和对峙检测功能的潜力,而其他方法可能无法使用。在激光器中,可以仔细控制发射光的特定波长,从而可以通过光谱法改善化学分析。激光器还具有远距离传播强烈能量的独特特性,这有望对爆炸物的僵化发现有望。隔离检测的可能性,设备和操作员可以与爆炸物保持安全距离,在抵抗威胁方面有广泛的应用。
课程注释原子吸收光谱法(AAS)。该方法的基本面。使用火焰雾化。设备。辐射源。火焰和燃烧器。分析,灵敏度,主要问题和干扰的表现。AAS使用电热雾化(石墨室)。分析的性能。石墨室内蒸发机制。应用AAS用于分析不同类型的样品的分析。电感耦合等离子体光学发射光谱法(ICP-OES)。ICP-OES,主要特征和应用领域的基本面。原子/离子排放,定性和定量分析的起源。电感耦合等离子体作为激发源。设备,光谱仪类型,分析性能,主要优势和缺点。干扰。样品制备。其他激励来源。电感耦合等离子体质谱法(ICP-MS)。ICP-MS,设备和光谱仪类型的基本面。血浆作为离子源的作用。ICP-MS的灵敏度。主要优势和缺点,干扰。 分析的性能和对不同类型样本的应用。 原子荧光光谱法(AFS)。 AFS的基本原理,主要特征。 设备,主要优势和缺点。 分子光谱。 光谱法的基本原理,主要。 基本概念。 分子的电子结构。ICP-MS的灵敏度。主要优势和缺点,干扰。分析的性能和对不同类型样本的应用。原子荧光光谱法(AFS)。AFS的基本原理,主要特征。设备,主要优势和缺点。分子光谱。光谱法的基本原理,主要。基本概念。分子的电子结构。分子的电子结构。能量水平,能量转变和相应的光谱电子吸收光谱。有机化合物的紫外光谱,其结构,从光谱获得的信息。溶剂,结合和结构变化对吸收带的强度和位置的影响。紫外光谱。吸收带,其性质。实际应用。定量分析。振动光谱。方法的原理。分子键的振荡,其数学描述。红外光谱。近,远,主要的红外辐射区。对红外光谱的解释。影响吸收峰的位置,宽度,强度的因素。样品制备,设备和记录技术。拉曼光谱法。该方法的本质,是研究的对象。从拉曼光谱获得的信息。表面增强的拉曼光谱。质谱法。技术和原理。获得分子离子的方法。 分裂规则和机制,来自质谱的信息。 质谱与色谱法的组合。 不同分析方法的组合。 阅读清单1。 J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.获得分子离子的方法。分裂规则和机制,来自质谱的信息。质谱与色谱法的组合。不同分析方法的组合。阅读清单1。J. Nolte,ICP发射光谱法;实用指南,威利,2003年。 2。 L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.J. Nolte,ICP发射光谱法;实用指南,威利,2003年。2。L. Ebdon,E.H。 Evans,A。Fisher,S.J。 Hill,《分析原子光谱概论》,Wiley,1998年。 3。 4。 S.M.L. Ebdon,E.H。 Evans,A。Fisher,S.J。Hill,《分析原子光谱概论》,Wiley,1998年。3。4。S.M.S.M.J. A.C. Broekaert,带有火焰和等离子体的分析光谱,Wiley,2002。NELMS,ICP质谱手册,Blackwell Publishing,2005年。5。L.H.J. Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。 6。 H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。 7。 R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998L.H.J.Lajunen,P。Peramaki,《原子吸收和排放的光谱化学分析》,第二版,皇家化学学会,2004年。6。H. Hesse,A。Meyer,A。Zeeh,有机化学中的光谱方法,Thieme,1997年。7。R. M. Silverstein,F.X。 Webster,有机化合物的光谱鉴定,Willey,1997 8。 P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。 9。 D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。 R.Kellner,J.M. Mermet,M。Otto,H.H。 widmer,分析化学,1998R. M. Silverstein,F.X。Webster,有机化合物的光谱鉴定,Willey,1997 8。P. Atkins,J。DePaula,“ Atkin的物理化学”,2006年。9。D.Mickevičius„CheminėsAnalizėsMetodai”,1 Tomas。,1998 10。R.Kellner,J.M.Mermet,M。Otto,H.H。widmer,分析化学,1998