使用微波和红外波长对地球的Atmo球形状态进行了远程测量[1,2]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。 红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。 于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。 这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。
摘要。高质量基因组DNA(GDNA)的分离是植物分子生物学中的一种关键技术。GDNA的质量决定了实时聚合酶链反应(PCR)分析的可靠性。在本文中,我们报告了针对各种植物物种中实时PCR优化的高质量GDNA提取方案。在96孔块中执行,我们的协议提供了高吞吐量。不需要苯酚 - 氯仿和液氮或干冰,我们的方案比传统的DNA提取方法更安全,更具成本效益。该方法需要10毫克的叶片组织才能获得5-10μg高质量的GDNA。光谱测量和电泳用于证明GDNA纯度。提取的DNA在限制酶消化法和常规PCR中有资格。实时PCR扩增足以以非常低浓度(3 pg/μl)检测GDNA。我们的无苯酚 - 氯仿方案的GDNA稀释液标准曲线显示出比苯酚 - 氯仿方案更好的线性(R 2 = 0.9967)(R 2 =
我们已经在基于绝缘体(SOI)的Schottky屏障光电二极管阵列(PDA)上制造了四元素的石墨烯/硅,并研究了其光电设备性能。在我们的设备设计中,单层石墨烯被用作SOI基板上N型SI通道的光刻定义的线性阵列上的常见电极。通过波长解析的光电流光谱测量显示,在自动操作模式下,PDA结构中的每个元素均显示出最大的光谱响应性约为0.1 A/W。时间依赖的光电流光谱测量值分别具有1.36和1.27 L S的升高时间和秋季时间,显示出出色的光电流可逆性。阵列中的每个元素的平均特定检测率约为1.3 10 12琼斯,而从代码上则是0.14 pw/hz 1/2的小噪声等效功率。预计此处提供的研究将在高增值石墨烯/基于SI的PDA设备应用方面提供令人兴奋的机会。
缺乏对金属 - 触发器界面处等离子体介导的电荷转移的详细机械理解,严重限制了有效的光伏和光催化装置的设计。与直接的金属到 - 触发器界面电荷转移相比,由金属中等离子体衰变产生的热电子产生的热电子的间接转移的相对贡献是相对的贡献。在这里,当对共振激发时,我们证明了从金纳米棒到氧化钛壳的总体电子转移效率为44±3%。我们证明,其中一半源自通过激发等离子的直接界面电荷转移。我们能够通过多模式的频率分辨方法来区分直接和间接途径,通过单粒子散射光谱和具有可变泵波长的时间分辨瞬态吸收光谱测量均相等离子体线宽。我们的结果表明,直接等离子体诱导的电荷转移途径是提高热载体提取效率的一种有希望的方法,该方法主要通过非特异性加热而导致的金属内在衰减。
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。
作者于 1991 年发明了一种新型直视色散元件——棱镜-光栅-棱镜 (PGP)。这种专利元件可以实现小型、低成本的高光谱成像光谱仪,适用于工业和研究应用。介绍了 PGP 光谱仪的光学系统和设计过程。该概念已应用于许多高光谱成像光谱仪。通过详细介绍四种设计,展示了 PGP 构造的潜力。1) 低成本机载高光谱成像光谱仪 AISA 的原型是 PGP 概念的首次应用。2) 开发了一种显微镜成像 UV-VIS-NIR 光谱仪系统,用于对木纤维等微米级物体进行光谱测量。3) 设计了一种连接到光纤探头的多点 PGP 光谱仪,用于在线颜色和油膜厚度测量等工业应用。 4) 介绍了用于大规模光纤布拉格光栅阵列的高速询问系统的 PGP 光谱仪设计。如今,PGP 光谱仪在世界范围内用于工业机器视觉和光谱分析、机载遥感和科学应用。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。
现有的发光成像技术通常使用单色摄像机来捕获空间分辨的强度信息。光谱信息需要光谱测量,通常缺乏空间分辨率,或者需要在整个测量区域进行扫描,需要长时间的测量持续时间(分钟或小时)。半导体材料,例如钙钛矿,可以用商用颜色摄像机来表征。在这项工作中,建立和研究了使用改良的商业颜色DSLR相机的增强发光成像设置,以同时在几秒钟内同时获得波长和强度信息。这可以补充现有的特征技术。波长估计。还进行了几个钙钛矿太阳能电池和薄膜样品的光致发光和电致发光成像。该技术被发现可以合理估计窄光谱发射(例如激光器)的波长,并且能够在空间和时间上显示波长的相对变化,以获得更广泛的光谱发射。这种具有成本效益的伪 - 光谱成像技术适用于由于降解和离子迁移而导致时变特性的钙钛矿。