无菌原理:包装材料供应商以单袋设计提供已用环氧乙烷 (ETO) 或蒸汽预灭菌的 RTU 容器。通过使用紫外线闪光,特别是在光谱的 UV-C 范围(100 - 280 nm),微生物会改变其分子结构并断裂共价键。其原因是 DNA 和蛋白质的吸收光谱位于 200 至 300 nm 之间。有两种方法可以消灭微生物:1) 光热效应(温度升高直至爆炸)和 2) 光化学效应(DNA 和蛋白质的改变)。
将非线性纳米光量设备引入光学频率梳量计量学领域为低功率和芯片集成时钟,高精度频率合成和广泛带宽光谱的新机会。但是,这些进步中的大多数仍被限制在光谱的近红外区域,该区域限制了在紫外线和可见范围内与大量量子和原子系统的频率梳集成。在这里,我们通过引入多段纳米型薄膜硅锂波导来克服这一缺点,这些尼贝特波导将工程性分散和鼠标匹配匹配的匹配结合在一起,从而通过χ(2)和χ(3)非线性的组合进行了有效的超核电生成。只有1,550 nm处的脉冲能量仅90 pj,我们实现了跨越330–2,400 nm的无间隙频率梳覆盖率。从近红外泵到350–550 nm的紫外线 - 可见区域的转化效率为17%,我们对优化的极点结构的建模预测效率更高。通过χ(2)在同一波导中通过χ(2)非线性的谐波生成直接产生载体 - 内玻璃偏移频率,以及在短达350 nm的波长下验证梳子连贯性的手段。我们的结果提供了一种集成的光子学方法,可以创建可见和紫外线频率梳子,以影响精度光谱,量子信息处理和在此重要光谱窗口中的光学时钟应用。
对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。
这个实验背后的科学原理 所有植物都需要叶绿素来进行光合作用,但叶绿素并不只有一种。向阳植物的叶子中含有更多的叶绿素“a”,这是捕获光线的主要色素,可以吸收光谱两端的光线。在阴凉处生长的植物含有更多的不同色素:叶绿素“b”,它可以吸收从其他叶子反射的部分波长的光线(光谱的蓝色端)。能在阴凉处生长的植物每平方厘米的叶绿体数量也更多,叶绿体也更大,因此它们总体上可以捕获更多的光线。
可用于探测材料表面的元素,电子和化学特性。11–14虽然通过峰值解构对XPS数据的解释很普遍,但对技术的基本理解和对正确数据处理的欣赏通常却经常丢失。15最近,在XPS领域的领先从业人员之间的社区努力中准备了一系列宝贵的指南,目的是使XPS的新研究人员能够计划实验并将其数据理解到高水平。本系列发表在“ X射线光电子光谱的实用指南”中,例如“用于X射线光电子光谱的实用指南:规划,进行和报告XPS测量的第一步” 16和“实用曲线拟合X射线光电机光谱曲线光谱”的实用指南。17此外,还有许多先进的技术,许多材料科学家都不熟悉。此外,XPS制造商的当前重点是使用表面探针的组装对单个分析点进行的高吞吐量检查,甚至是非表面特定技术(例如拉曼光谱)。由于此类系统的可用性变得更加广泛,因此需要对多技术表面分析的能力,优势和弱点进行广泛了解。本综述旨在强调使用基于实验室的XP和相关表面技术的材料分析这种组合方法的好处。在基于实验室的系统(离子散射,紫外光电器,螺旋螺旋发射和电子能量损失光谱)上最常规发现的那些实验探针的应用,尽管许多其他补充
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
X射线光电子光谱(XPS)是一种用于研究聚合物电解质膜燃料电池和电解剂中催化剂的表面特性和组成的常用技术。XPS分析催化剂层(CLS)越来越多地使用催化剂和支持组成和结构之间的关系,催化剂墨水组成,CL制造方法和参数以及它们的性能和耐用性。基于IR的CLS的表征由于多种因素,包括对IR 4F光谱的解释,O 1S光谱中的催化剂和离子体物种的解释以及离子体对X射线损伤的敏感性,这会导致催化剂ionomer界面的变化,通常比样本之间的差异更大。本研究报告了一种详细的XPS表征的方法,基于IR的CL,建立定量指标,并提供有关催化剂离子体界面的见解,该界面可以与多种处理和性能指标相关。具体来说,我们已经评估了使用几种常见CL涂层方法制备的CL中的表面组成差异。我们还研究了用不同的催化剂负荷和电化学测试后选定样品制备的CL。通常,我们发现了元素比和从O 1S光谱的详细分析得出的趋势的良好协议。此外,O 1S分析揭示了催化剂组成的差异,解决了与IR 4F光谱解释有关的一些挑战和局限性。
人工智能在基于经典和新型光谱的癌症诊断方法中的进展。评论 Marina Zajnulina,博士,光子科学家和物理学家 https://orcid.org/0000-0002-9666-0534 联系方式:marina@physik.tu-berlin.de 2022 年 8 月 7 日 摘要 癌症是全球主要的死亡原因之一。快速安全的早期、术前和术中诊断可显著促进癌症的成功识别和治疗。在过去 15 年中,人工智能在增强癌症诊断技术方面发挥着越来越重要的作用。本综述介绍了人工智能应用在 MRI 和 CT 等成熟技术中的进展。此外,它还展示了与正在开发的用于移动、超快速和低侵入性诊断的基于光谱的方法相结合的巨大潜力。我将展示如何利用基于光谱的方法取代薄切片或苏木精-伊红染色,从而减少病理分析的组织准备时间。我将介绍一些光谱工具的例子,用于快速、低侵入性的体外和体内组织分类,以确定肿瘤及其边界。此外,我将讨论与 MRI 和 CT 相反,光谱测量不需要使用化学药剂来提高癌症成像的质量,这有助于开发更安全的诊断方法。总的来说,我们将看到光谱学和人工智能的结合构成了一个非常有前景且快速发展的医疗技术领域,它将很快增强现有的癌症诊断方法。 1. 简介 1.1 癌症是我们这个时代的瘟疫 根据世界卫生组织 (WHO) 的数据,癌症是世界各地的主要死亡原因之一,是一大类疾病,其特征是器官或组织无法控制的异常细胞生长。如果这些细胞侵入身体邻近部位或扩散到其他器官,我们将此过程称为转移。广泛转移是癌症死亡的主要原因(WHO:癌症,2022 年)。根据全球癌症统计数据,2020 年全球新增癌症病例 1930 万例(Sung 等人,2021 年)。同年约有 1000 万人死于癌症。仅在美国,预计 2022 年将新增约 192 万例癌症病例和 61 万例癌症死亡病例(Siegel 等人,2022 年)。新增病例最多的癌症类型是乳腺癌、肺癌、结肠和直肠癌、前列腺癌、皮肤癌和胃癌。其中最致命的类型是肺癌、结肠和直肠癌以及肝癌的恶性肿瘤(癌症)(WHO:癌症,2022 年;Wild 等人,2020 年)。虽然由于卫生和医疗水平的提高,过去 60 年来,传染病等造成的死亡人数一直在持续下降,由于总人口年龄的增长,癌症死亡人数正在增加。因此,世卫组织预计,到 2040 年,每年新增癌症病例数将超过 2700 万 (Wild 等人,2020 年)。癌症诊断和治疗的新发展有助于减缓这一趋势。在这篇评论中,我重点介绍了人工智能 (AI) 在肿瘤学领域的进展,肿瘤学是医学的一个分支,涉及癌症的预防、诊断和治疗。我展示了 AI 如何增强传统的诊断成像技术,例如 MRI(磁共振成像)或 CT(计算机断层扫描),并概述了基于光谱的新型方法,以实现更快、更安全的早期以及术中和术后诊断。
光学集体汤姆逊散射用于诊断伦敦帝国理工学院 Magpie 脉冲功率发生器的磁化高能密度物理实验。该系统使用来自 Nd:YAG 激光的 2 次谐波的放大脉冲(3 J、8 ns、532 nm)来探测各种高温等离子体物体;密度在 10 17 -10 19 cm -3 范围内,温度在 10 eV 到几 keV 之间。散射光从等离子体内 100 µ m 级体积中收集,然后成像到光纤阵列上。多个收集系统从不同方向观察这些体积,同时使用不同的散射 K 矢量(和不同的相关 α 参数,通常在 0.5 – 3 范围内)进行探测,从而可以独立测量大量等离子体流的不同速度分量。光纤阵列与带有门控 ICCD 的成像光谱仪耦合。该光谱仪配置为观察集体汤姆逊散射光谱的离子声波 (IAW)。用理论谱密度函数 S ( K , ω ) 拟合光谱可测量局部等离子体的温度和速度。拟合受到激光干涉仪对电子密度的独立测量以及不同散射矢量的相应光谱的限制。这种 TS 诊断已成功应用于广泛的实验,揭示了磁化冲击、旋转等离子体射流和内爆线阵列内的温度和流速转变,以及提供磁重联电流片内漂移速度的直接测量。I. 简介