ZnMgO 固溶体体系之所以受到关注,是因为通过改变其成分可以调整许多重要的物理特性。该合金体系在室温下覆盖了直接带隙 3.36 eV(ZnO)和 7.8 eV(MgO)之间的宽紫外 (UV) 光谱范围,因此对短波长光学应用非常有吸引力,例如紫外探测器 [1-3] 和光发射器 [4-6]。Zn 1-x Mg x O 体系 [7,8] 通过调整体系中的成分(x 参数值),可以模拟宽光谱范围内的光学、发光和光电特性。通过改变成分,可以生产用于短波长 UV-A(320-400 nm)、UV-B(280-320 nm)和 UV-C(200-280 nm)辐射的装置 [9,10]。这些材料的纳米结构化,特别是纳米结构薄膜的生产,是模拟特定性能的另一个元素。各种技术已用于制备 ZnMgO 薄膜,如脉冲激光沉积 (PLD) [11]、等离子体增强原子层沉积 (PE-ALD) [12]、热液 [13]、化学浴沉积 (CBD) [14]、射频等离子体辅助分子束外延 (RF-MBE) [15-18]、DC [19, 20] 和 RF [21-23] 磁控溅射、化学气相沉积 (CVD) [24]、金属有机化学气相沉积 (MOCVD) [25, 26]、气溶胶沉积 [27-31] 和溶胶-凝胶旋涂 [30, 32-35]。气溶胶沉积法具有易于控制和处理化学品和基材以及对化学计量具有出色控制的优点。由于采用非真空设备、低温处理、低缺陷密度和低环境影响,该方法适合于以更快的速度和低成本制备高质量大面积薄膜。该方法可以在相当短的时间内沉积薄膜,易于掺杂,并制备具有良好电学和光学性质的均匀薄膜。
使用偏振滤波来最大化信噪比 (SNR),尽管使用低激发功率,但仍能获得良好的组织成像深度。然而,在将血管结构与髓鞘轴突进行比较时,内在信号可能会出现一些模糊性。上述工作通过结合分子成像(例如第三谐波产生 (THG))解决了这种矛盾。在眼科成像领域,有大量关于相位对比有助于识别细胞界面的研究。Sulai 等人以标准自适应光学扫描激光检眼镜 (AOSLO) 成像装置为基础,将相位对比附加到 AOSLO 系统中。8 显微镜点扩展函数的横向分离增强了整体对比度和检测系统微特征的能力。9 此后,再也没有在大脑中研究过类似的方法。然而,使用 NIR-II 光谱范围会减少光的散射,这可能有助于实现相位对比成像,如果应用于反射共聚焦显微镜设置,将会大有裨益。在没有飞秒源产生 THG 的情况下,血管造影可以从类似于光学相干断层扫描 (OCT) 中的散斑分析的技术中受益。基于信号的高频时间滤波,OCT 能够在体内检索红细胞路径。10 类似于 NIR-II 反射共聚焦显微镜的方法可以帮助区分皮质组织中的轴突和血管。在本研究中,我们调查了相位对比方案与 NIR-II 反射共聚焦显微镜的结合是否可以为细胞(包括管腔中的红细胞)提供内在对比。这项研究将表明,将这种成像装置与高频时间滤波相结合,可以证明是一种有效的框架,可以检测微血管网络结构(或血管结构),并区分皮质中具有流动的动态元素(如血管)和静态元素。我们的报告描述了成像装置、动态结构成像方法和体内测试,其中小鼠的头骨保持完整,以测试定制显微镜的功能。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
摘要:遥感 (RS) 目前被视为用于科学目的的入侵和扩张植物测绘的标准工具之一,并在自然保护管理中得到越来越广泛的应用。RS 方法的适用性由其局限性和要求决定。最重要的限制之一是物种覆盖率,在此覆盖率下分类结果是正确的并且对自然保护有用。2017 年在波兰三个地区开展的主要目标是确定可以通过 RS 方法识别目标物种的最小覆盖率。本研究的第二个目标与方法的要求有关,即根据多边形数量和目标物种的丰度百分比覆盖率优化目标物种的训练多边形集。我们的方法必须易于使用、有效且适用,因此使用基本栅格集(最小噪声分数 (MNF) 变换后的前 30 个通道(来自光谱范围为 0.4–2.5 µ m 的 HySpex 传感器的高光谱数据马赛克)和常用的随机森林算法进行分析。该分析使用空间分辨率为 1 m 的机载高光谱数据对一种入侵植物和三种扩张植物(两种草类和两种大型多年生植物)进行分类。地面训练和验证数据集与机载数据收集同时收集。在测试不同的分类场景时,仅更改目标物种的训练多边形集。分类结果基于三种方法进行评估:准确度测量(Kappa 和 F1)、具有不同物种覆盖度的子类中的真阳性像素以及与现场制图的兼容性。分类结果表明,要将目标植物物种分类到可接受的水平,训练数据集应包含物种覆盖度在 80-100% 之间的多边形。仅使用具有可变但较低覆盖度(20-70%)的物种的多边形进行训练,并在 80-100% 范围内缺失样本,导致地图不可接受,因为对目标物种的估计过高。考虑到生态系统是异质的,我们在物种覆盖度超过 50% 的地区实现了物种的有效识别。这些研究的结果开发了一种现场数据采集方法,以及在机载数据采集以及地面采样的训练和验证中同步的必要性。
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
MARS Express上的Omega光谱仪获得了对火星肢体的几种观察,这些观察仪仍未得到探索。在这里,我们根据火星大气灰尘的丰度和大小来探讨这些数据的信息内容。我们通过应用全球散射蒙特卡洛1D辐射转移代码来接近灰尘检索,以建模0.5 - 2.5μm光谱范围(VNIR和SWIR OMEGA通道),以使粉尘有效半径和数量密度变化在大约之间。8和50公里。 这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。 该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。 开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。 发现VNIR通道可用于降低辐射转移溶液的退化。 在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。8和50公里。这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。发现VNIR通道可用于降低辐射转移溶液的退化。在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。实际上与MCS数据达成了总体协议,在一种情况下,欧米茄退休的尘埃与Hellas Basin的当地风暴兼容。在火星气候数据库中没有很好地表示,该数据库提供了每月平均统计数据。我们的结果证明了欧米茄肢体数据在定量上有助于火星尘埃研究的能力,尽管需要在探测的光谱范围内准确地对多个散射进行准确模拟多个散射,但仍需要进行较复杂且缓慢的辐射转移计算方案。在整个Omega肢体数据集中,理想的检索方法的理想应用也有助于评估当地沙尘暴的发生,需要进一步的工作,旨在包括水冰气溶胶和可能的热发射。是使用蒙特卡洛建模方法对欧米茄肢体数据进行的首次尝试,这项工作代表了一种有用的基准测试,用于更快,虽然准确,但较不准确,辐射转移模型。