由于推力是体力,所以不存在惯性力的作用。由于它们产生的体力均匀地作用在飞船内部的每一个原子上,所以可以产生任意大小的加速度,而不会对机组人员造成任何压力, 可以实现从静止状态迅速启动到大气中各个方向、迅速停止、垂直转弯、之字形转弯等飞行模式, 最终的最大速度接近光速, 由于飞船周围的空气也随飞船一起加速,所以即使飞船在大气中高速移动(10km/s - 100km/s),也可以降低气动加热。但是,预计会有等离子体(电离空气)包裹飞船, 由于它是电磁推进发动机,所以没有与燃烧相关的热源、噪音或废气, 发动机和电源都安装在飞船内。因此既可以在行星大气层中飞行,也可以在宇宙空间中飞行; 通过磁场的脉冲控制,加速度从 0G 变化到任意高加速度(例如 100G); 减速方便,便于再入大气层; 与上述第四项类似,飞船周围的海水也会随飞船一起加速,因此海水的阻力减小,可以在海中高速移动。可以顺利从大气层进入海中,而不会因海面碰撞而溅起水花。
概述 光子是无质量的基本粒子,可用于量子通信、计算和计量应用。为了满足这些应用的科学标准,需要具有独特特性的单光子。本项目开发了紧凑高效的单光子源,以及用于表征这些源的合适测量技术。 项目需求 能够安全地传输数据越来越重要。目前,这是使用加密来实现的,但有可能拦截这些通信并破解加密。量子通信和计算有可能成为下一代加密技术并提供安全传输。使用光子信号意味着可以检测到任何信号中断,并且无法复制传输。量子通信和计算依赖于传输具有特定特性的单个光子。虽然目前有几种不同的技术正在开发用于量子计算和量子信息处理,但光子特别具有吸引力,因为它们可以以光速传播,与周围环境相互作用较弱,并且可以通过线性光学进行操纵。传输依赖于单个粒子,这意味着在发送者和接收者不知情的情况下无法拦截。单光子源的开发将是 k
摘要 尽管数字信号处理器被广泛用于执行高级计算任务,但由于昂贵的模拟数字转换器,它们受到多种限制,包括速度低、功耗高和复杂性。因此,最近人们对执行基于波的模拟计算的兴趣激增,这种计算可以避免模拟数字转换并允许大规模并行操作。特别是,已经提出了基于人工设计的光子结构(即超材料)的基于波的模拟计算的新方案。这类计算系统被称为计算超材料,它们的速度可以和光速一样快,小到它的波长,但可以对传入的波包进行复杂的数学运算,甚至可以提供积分微分方程的解。这些备受追捧的特性有望实现基于光波传播的新一代超快速、紧凑和高效的处理和计算硬件。在本篇评论中,我们讨论了计算超材料领域的最新进展,并概述了用于执行模拟计算的最先进的元结构。我们进一步描述了这些计算系统的一些最令人兴奋的应用,包括图像处理、边缘检测、方程求解和机器学习。最后,我们展望了未来研究的可能方向和关键问题。
简要介绍一下电磁波谱 (EMS),有助于解释电子战系统在现代战争中的作用。毫不奇怪,从手机到简单的电视遥控器,我们日常生活中的许多设备都使用 EMS。什么是电磁波谱 1 ?基本上,EMS 可以定义为在特定频率范围和波长下以光速传播的电磁波。EMS 的频率和波长的全部范围如下图 1 所示。2 EMS 频率和波长部分的顶部属于伽马射线和 X 射线,由于其高能光子和非常小的波长(λ=10-10 厘米)的性质,它们常用于医学领域(医学成像)和核物理。我们在 X 射线之后立即看到 EMS 的紫外线和红外光部分。这种 EMS 大部分对人眼来说是看不见的,但只有在这个频谱的一小部分中,电磁波才能被人类和大多数动物看到。红外摄像机(用于检测物体的热图像)也适用于电磁频谱的这一部分。电磁频谱的 1-300 GHz 频率(100 米-0.5 毫米波长)频谱主要由各种雷达系统使用,这些雷达系统主要用于军事应用、气象观测和导航辅助目的。电磁频谱范围的底部主要用于无线电通信和电视
在本模块中,学生将学习 NASA 深空网络 (DSN) 背景下的以下四个概念:通信、延迟、性能和网络。这些概念是现代电信的基础,随着我们想要通信的距离越来越远,这些概念变得越来越重要。本指南将挑战学生在他们之前对通信的理解(例如有关波、光速、太阳系和网络的知识)的基础上,了解 NASA 深空网络的创建、运行和规模。学生将有机会像计算机一样进行通信,方法是将数据编码为二进制或十六进制或解码数据;计算地球和太阳系中不同物体之间的延迟时间;模拟信号如何传递、延迟或降级;并将所有这些概念交织到更广泛的网络概念中。每个活动中的各种额外资源不仅可以增强体验,还可以让学生直观地看到这些概念如何影响他们的日常生活。鼓励教育工作者和辅导员探索每个活动中提供的额外内容,因为深空通信会根据研究不断变化。虽然 NASA 通信技术几乎可以在学生的生活中随处找到,但以下两个例子重点介绍了 NASA 最近开发的与深空通信研究相关的衍生技术。
在本模块中,学生将学习 NASA 深空网络 (DSN) 背景下的以下四个概念:通信、延迟、性能和网络。这些概念是现代电信的基础,随着我们想要通信的距离越来越远,这些概念变得越来越重要。本指南将挑战学生在他们之前对通信的理解(例如有关波、光速、太阳系和网络的知识)的基础上,了解 NASA 深空网络的创建、运行和规模。学生将有机会像计算机一样进行通信,方法是将数据编码为二进制或十六进制或解码数据;计算地球和太阳系中不同物体之间的延迟时间;模拟信号如何传递、延迟或降级;并将所有这些概念交织到更广泛的网络概念中。每个活动中的各种额外资源不仅可以增强体验,还可以让学生直观地看到这些概念如何影响他们的日常生活。鼓励教育工作者和辅导员探索每个活动中提供的额外内容,因为深空通信会根据研究不断变化。虽然 NASA 通信技术几乎可以在学生的生活中随处找到,但以下两个例子重点介绍了 NASA 最近开发的与深空通信研究相关的衍生技术。
摘要:本文的目的是在参考动态介质的框架内呈现真空能和暗能量,并解释两个能量之间的现象差异。动态培养基由实体(称为gravitons)组成,其速度的速度平均速度决定了空间中每个点的介质的频率的速度。表明,在黑洞的地平线内(由Schwarzschild Radius定义),频率的速度大于光速,这意味着吸引人本身对光的速度更高。两个光子以两个相反的方向传播的量子纠缠是由于重力子的连接。因此,提议重力以速度V g r宇宙t planck 2.4 10 69 m/s移动,这使得可以保证两种光子在宇宙中的位置不可能,并且无法测量光子触发时间所花费的时间以降低其双胞胎光子的时间,因为它比Planck Time t planck planck少了。建立了真空能的表达和在参考动态介质的框架内的深色能量的表达。两个表达式e真空和e黑暗以及最遥远星系的速度V Galaxy的速度使Gravitons速度的近似值
埃万杰洛斯·加齐斯教授,雅典国立技术大学,欧洲核子研究中心 欧洲核子研究中心是欧洲核子研究中心,是基础研究和科学领域的世界卓越中心。科学家和工程师正在探索宇宙的基本结构。他们使用世界上最大、最复杂的科学仪器来研究物质的基本成分——基本粒子。粒子以接近光速的速度碰撞在一起。这一过程让研究人员了解到粒子如何相互作用,并深入了解自然的基本规律。 欧洲核子研究中心旨在与科学技术专家合作,为将欧洲核子研究中心的技术和专业知识转移到工业领域创造机会。最终目标是加速创新,最大限度地发挥欧洲核子研究中心对社会的全球积极影响。 研讨会内容: 将进行 4 小时的演讲和演示,介绍欧洲核子研究中心的先进技术: 加速器和探测器技术 欧洲核子研究中心对大数据的贡献 欧洲核子研究中心 2030 年之后的未来计划 欧洲核子研究中心技术的医疗应用
随着技术继续以惊人的速度发展,计算的未来正在呈现令人兴奋的新维度。该领域最有前途和最有趣的新兴技术之一是标量波,这一概念挑战了传统的计算范式。标量波具有革命性计算、通信和各种其他应用的潜力,因为它具有即时数据传输、降低能耗和抗电磁干扰等优势。在本文中,我们将探索标量波的世界,并深入探讨其重塑计算未来的潜力。标量波,也称为纵波,是一种电磁波,在几个基本方面与传统的横波不同。横波沿垂直于其运动的方向振荡,而标量波沿其传播方向振荡。这一独特特性使它们与众不同,并提供了大量应用和优势。标量波最早由著名科学家詹姆斯·克拉克·麦克斯韦于 19 世纪中叶提出,但直到 19 世纪末 20 世纪初尼古拉·特斯拉的发现,标量波才开始受到重视。特斯拉对非赫兹波(即不受光速限制的波)的概念很感兴趣,他相信标量波可以提供革命性的可能性。然而,他的工作在很大程度上仍然不为人知,直到最近几年,这一概念才开始受到关注 [1]。
摘要 一篇题为“深度学习在人工智能中不合理的有效性”的论文认为,实现通用人工智能(即人类水平的智能)的方法就是复制有机大脑为人类做事的方式。该论文认为,人工智能必须从一个非常有限的二维空间(称为平面国)转移到一个万维空间,这个万维空间代表了人类大脑皮层神经元之间的数百万亿个突触。论文指出,如果他们希望实现通用人工智能,那么从二维人工智能转向万维人工智能实际上是朝着错误的方向迈进。事实上,尽管大脑皮层神经元之间有数百万亿个突触,但人类意识是一维的或整体的。为了实现通用人工智能,机器必须做人类可以做的一切,且输出中没有间隙或接缝。提出了一种人类大脑模型,其中大脑皮层的不同部分专门用于不同的功能,这些不同的区域通过脑电波以光速进行电子通信,这就是大脑在我们体内产生整体一维意识的方式。此外,由于自然界中不存在数字,因此有机大脑与深度学习不同,无需借助数字程序或统计数据即可产生智能输出。