摘要。俄罗斯联邦于 2023 年通过了一项到 2030 年对量子通信行业进行监管的概念。本文作者参与了该概念的制定。该文件证实了改进光通信立法的必要性。研究表明,目前尚无对光通信进行法律监管的全球参考系统,这将对有效监督大气光量子通信线路构成挑战。本文提出了旨在规范大气光量子通信线路的优先措施,这将扩大量子通信的商业潜力。作者提出了保护量子通信服务用户权利以及大气光量子通信线路所有者权利的措施。为了促进大气光量子通信线路的运行,必须事先采取措施,因为法律的不确定性对基础设施项目的发展构成了限制。
基于抽象的量子技术将为系统工程师提供确保数据通信的新功能。英国AIRQKD项目已实施了一个免费的空间光学量子密钥分布(QKD)系统,以实现不断生成的对称加密密钥。生成的密钥的用例之一是将车辆 - 所有(V2X)通信保护。V2X申请将受益于QKD为QUASTUM SOCORES提供的证书 - 免费安全保障。如何检查FSO -QKD如何集成到V2X体系结构中。V2X的概述具有FSO -QKD可以保护V2X数据的作用,尽管存在一些障碍。6G通信的问题之一是V2X设备之间的潜在线(LOS)考虑。检查了LOS所需的建模,以分析建筑物在6G体系结构中的基础架构链接的中断性能。该模型的结果表明,如果要依靠6G LOS通信来用于将来的安全性 - 关键的V2X应用程序,则需要进一步的工作。
摘要。量子状态共享是量子信息的重要协议,可以在丢失部分信息时实现安全的状态分布和重建。在(k,n)阈值量子状态共享中,秘密状态被编码为n股,然后分配给n个参与者。秘密状态可以由任何K玩家(K> n∕2)重建,而其余的玩家一无所获。在连续变量制度中,量子状态共享的实施需要馈电技术,该技术涉及光学和电磁转换。这些转换限制了量子状态共享的带宽。在这里,为了避免光学电子和电形转换,我们在实验上证明了(2,3)阈值确定性的全光量子态共享。基于四波混合过程的低噪声相位不敏感的放大器用于替代前馈技术。我们在实验上证明,三个玩家中的任何两个都可以合作实施秘密状态的重建,而其他玩家无法获得任何信息。我们的结果为实施任意(k,n)阈值确定性的全光量子状态共享和铺平了构建全光宽带量子网络的方式提供了一个全光的平台。
光量子存储器及其在量子通信系统中的应用 马利军、Oliver Slattery 和唐晓 美国国家标准与技术研究所,马里兰州盖瑟斯堡 20899,美国 lijun.ma@nist.gov oliver.slattery@nist.gov xiao.tang@nist.gov 光量子存储器是一种可以存储光子的量子态并以高保真度按需检索的装置。它正在成为一种必不可少的设备,以提高通信、计算、计量等领域使用的许多量子系统的安全性、速度、可扩展性和性能。在本文中,我们将特别考虑光量子存储器对量子通信系统的影响。在概述光量子存储器的理论和实验研究进展之后,我们将概述其在量子通信中的作用,包括作为光子源、光子干涉、量子密钥分发(QKD)、量子隐形传态、量子中继器和量子网络。 关键词:量子通信;量子密钥分发;量子存储器;量子网络;量子中继器。接受日期:2019年12月9日 发表日期:2020年1月16日 https://doi.org/10.6028/jres.125.002 1. 引言 量子通信是一种利用信息载体(如单光子)的量子特性,实现双方量子信息交换的技术。该技术有许多独特的应用,是经典通信系统中不可能实现的。目前,量子通信有两种主要应用:量子密钥分发(QKD)和量子纠缠分发。
建筑Paul Hilaire,Grégoirede Gliniasty,Pierre- Emmanuel Emeriau,Stephen Wein,Stephen Wein,Alexia Salavrakos,Shane Mansfield Quandela,7 RueLéonardde Vinci,Massy,Massy,Massy,France paul.hilaire@quandela eactormand paul and comply-distuts量子量子量子(FTRESMBLY量子) 噪音。实现此目的,需要仔细安排组件,以便易于故障的量子信息处理,而无需过多的硬件。光子技术显示出大规模量子计算的希望,但是当前有效的全光FTQC体系结构[1]具有较大的资源足迹,这是由于基于广泛的硬件多路复用的资源状态生成器的严重依赖。基于Quantum-Emitter的单光子源最近在单光子质量方面优于传统方法,它们的旋转充当量子记忆,从而增强了发射光的纠缠。当前最大的光子纠缠状态是用这种来源产生的[2-3]。我们提出了针对基于量子发射机的平台量身定制的自旋光量子计算(SPOQC)体系结构,从而大大降低了资源足迹和硬件复杂性而不依赖多路复用。它利用旋转的光子发射和有效的重复范围,直至成功范围,以处理量子信息。SPOQC的性能与全光音架构相匹配。它评估它是模块化的,可扩展的,并且可以实现任何稳定器量子误差纠正(QEC)代码。量子信息在量子发射器的旋转中编码,光子促进了长距离两旋式门,从而促进了高级QEC代码的实现
1. 项目概要 各种物理系统的研究正在朝着实现实用量子计算机的方向发展。在大多数系统中,一个主要挑战在于实用量子计算所需的高度复杂的量子处理器。另一方面,光学系统可以用紧凑的量子处理器进行实用量子计算。由于这种量子处理器已经得到证实,开发的主要重点是光量子比特的生成。作为光量子比特源,我们提出了量子任意波形发生器 (Q-AWG)。Q-AWG 是一种多功能量子光源,可以输出任意量子态的光和任意脉冲波形。由于其高度的通用性,Q-AWG 可以作为实用光量子计算机的核心光源,并有可能解决在实现实用量子计算机的道路上出现的各种挑战。Q-AWG 确实是一个“终极量子光源”,它的实现将大大加速光量子计算机的发展。
• 为了实现通用性,至少需要 2D 集群状态、高斯运算和一个非高斯运算。 • 为了实现容错性,需要 3D 集群状态。 • 集群状态不需要一次性生成 - 一些节点可以同时生成,而其他节点则被测量消耗。
量子技术使我们能够利用量子力学定律来进行诸如通信,计算,计算或传感和计量学等任务。随着第二次量子革命的持续,我们希望看到第一个新颖的量子设备因其出色的性能而取代经典的DECECES。从基础研究到广泛可访问的标准有很大的动力来形成量子技术。量子通讯承诺通过量子密钥分布具有绝对安全性的未来;量子模拟器和计算机可以在几秒钟内执行计算,其中世界上最强大的超级武器需要数十年的时间;量子技术实现了高级的成像技术。可能会出现进一步的申请。全球市场已经意识到了量子技术的巨大潜力。Menlo Systems是该领域的先驱,为这些新型挑战提供了商业解决方案。光子学与量子物理学之间的联系很明显。量子模拟和计算在这些类型的实验中使用冷原子和离子作为Qubits,实验室全球使用光学频率梳子和超稳定激光器。量子通信通常依赖于单个光子,这些光子是在近红外(-IR)光谱范围内精确同步飞秒激光脉冲产生的。量子传感和计量学需要频率梳和激光技术的最高稳定性和准确性。和 - 值得突出显示的应用程序 - 正在替换国际单位系统(SI)中第二个定义的光原子时钟。