大于 80 Hz 的高频振荡 (HFO) 具有独特的特征,可将其与时频表示中可以充分证明的尖峰和伪影成分区分开来。我们引入了一种无监督的 HFO 检测器,它使用计算机视觉算法在二维 (2D) 时频图上检测 HFO 标志。为了验证检测器,我们引入了一个基于具有高斯包络的正弦波的 HFO 分析模型,可以推导出时频空间中的解析方程,这使我们能够在时域中常见的 HFO 检测标准与计算机视觉检测算法使用的频域标准之间建立直接对应关系。检测器在时频表示上识别潜在的 HFO 事件,如果满足有关 HFO 频率、振幅和持续时间的标准,则将其归类为真正的 HFO。根据分析模型,在存在噪声的情况下,对检测器进行了模拟 HFO 的验证,信噪比 (SNR) 范围从 -9 到 0 dB。检测器的灵敏度在 SNR 为 -9 dB 时为 0.64,在 -6 dB 时为 0.98,在 -3 dB 和 0 dB 时 > 0.99,而其阳性预测值均 > 0.95,无论 SNR 如何。使用相同的模拟数据集,我们的检测器与四个之前发布的 HFO 检测器进行了对比。F 度量是一种同时考虑灵敏度和阳性预测值的组合指标,用于比较检测算法。我们的检测器在 -6、-3 和 0 dB 时超越其他检测器,在 -9 dB SNR 时拥有仅次于 MNI 检测器的第二好 F 分数(0.77 对 0.83)。研究人员在 6 名患者的一组 36 个颅内脑电图 (EEG) 通道上测试了在临床记录中检测 HFO 的能力,其中 89% 的检测结果由两名独立审阅者验证。结果表明,基于时频图中的 2D 特征对 HFO 进行无监督检测是可行的,并且其性能与最常用的 HFO 检测器相当或更好。
生成AI(Genai)技术的迅速崛起将诸如Openai的Sora之类的创新视频生成模型带到了前方,但是由于其高碳足迹,这些进步带来了巨大的可持续性挑战。本文介绍了以碳为中心的视频生成案例研究,从而对该技术的环境影响进行了首次系统研究。通过分析开放式文本对视频模型的开放式索拉(Openai Sora)模型,我们将迭代扩散降解过程确定为碳排放的主要来源。我们的发现表明,视频生成应用比基于文本的Genai模型要大得多,并且它们的碳足迹在很大程度上取决于剥离步骤数字,视频分辨率和持续时间。为了促进可持续性,我们建议在高碳强度期间整合碳感知信用系统并鼓励离线产生,为Genai提供环保实践的基础。
压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
3 3光电半导体元件光电子半导体设备3 3 3光电子学光电2 4光电实验技术光电子实验室光电工程概论3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3个测量系统的量度测量系统。测量系统设计半导体元件及材料特性分析3 3 3分析半导体设备和材料半导体元件物理33 3 3 3 3 3 3半导体行业和技术的特殊主题半导体磊晶技术3 3 3 3 3 3 3 3 3 3 3 3半导体制程技术半导体处理技术纳米科学和技术简介3 3 3微电子材料与制程微电源材料和加工新兴奈米电子元件与奈米光子结构33 3 3 3 3 3 3 3 3 3 3 3 3 3 3量子机制3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 quant
阳光暴露被认为是年龄相关黄斑变性(AMD)的危险因素,这是老年人常见的神经退行性视网膜疾病。具体来说,阳光内的蓝光波长会对光敏性视网膜细胞的生理产生负面影响,包括视网膜色素上皮(RPE)和感光体。本评论探讨了蓝光引起的视网膜变性,强调了RPE中的结构和功能障碍。初始部分简要概述了蓝光对光感受器的影响,然后对其对RPE的有害影响进行了全面分析。体外研究表明,蓝光暴露会诱导RPE的形态改变和功能障碍,包括吞噬活性降低,神经营养因子的分泌破坏以及障碍功能受损。还探索了视网膜损伤的机制,包括氧化应激,炎症,脂肪霉素积累,线粒体功能障碍和RPE中的ER应激。讨论了用于研究蓝光暴露的体外,动物和体内模型的优势和局限性,并建议在未来的研究中提高可重复性。
【成立日期】1949年2月26日 【资本金】3000万日元 【年销售额】82亿6481万日元(2022年10月会计年度) 【员工人数】229名(2023年4月为止) 【所在地】东京都新川区上大崎2-19-9 【TEL】03-3493-2111(总机) 【URL】https://www.mitsumura-tosho.co.jp/
运动想象脑机接口 (MI-BCI) 已成为神经康复领域的一项很有前途的技术。然而,目前的多类 MI-BCI 的性能和计算复杂度尚未得到充分优化,而且很少研究对运动想象任务中个体差异的直观解释。在本文中,首先将精心设计的多尺度时频分割方案应用于多通道脑电图记录以获得时频片段 (TFS)。然后,利用基于特定包装器特征选择规则的 TFS 选择来确定最佳 TFS。接下来,使用发散框架中实现的一对一 (OvO)-divCSP 来提取判别特征。最后,利用一对其余 (OvR)-SVM 根据选定的多类 MI 特征预测类标签。实验结果表明,我们的方法在两个公开的多类 MI 数据集上取得了优异的性能,平均准确率为 80.00%,平均 kappa 为 0.73。同时,提出的 TFS 选择方法可以显著减轻计算负担,同时准确率几乎没有降低,证明了实时多类 MI-BCI 的可行性。此外,运动想象时频反应图 (MI-TFRM) 是可视化的,有助于分析和解释不同受试者之间的表现差异。
摘要在本文中,我们提出了一种新的最小数学概念方法,用于使用光两极化的量子力学,以使中学学生对量子化,以使学生更接近所谓的量子力学思维方式。我们调查了学生如何思考一些基本概念和基本定律,我们发现某些概念在年轻的年龄段也是可以理解的。我们研究了所谓的状态圈的引入,它可以忠实地代表量子机械形式主义,而无需让学生参与抽象代数计算。然后,我们对学生对叠加原则和缺乏轨迹的想法进行了分类和分析,发现测量和缺乏轨迹的概念是有问题的。我们探讨了年轻的学生倾向于拥有类似格式塔的量子概念的心理模型,同时也能够正确地使用可视化量来在量子领域进行推理。总的来说,本文提供了最早在中学中引入量子力学基本特征的证据。
压印光刻是一种有效且众所周知的复制纳米级特征的技术。纳米压印光刻 (NIL) 制造设备采用一种图案化技术,该技术涉及通过喷射技术将低粘度抗蚀剂逐场/逐场/逐次沉积和曝光到基板上。将图案化的掩模放入流体中,然后通过毛细作用,流体快速流入掩模中的浮雕图案。在此填充步骤之后,抗蚀剂在紫外线照射下交联,然后去除掩模,在基板上留下图案化的抗蚀剂。与光刻设备产生的图案相比,该技术可以忠实地再现具有更高分辨率和更大均匀度的图案。此外,由于该技术不需要大直径透镜阵列和先进光刻设备所需的昂贵光源,因此 NIL 设备实现了更简单、更紧凑的设计,允许将多个单元聚集在一起以提高生产率。