脑磁图 (MEG) 和脑电图 (EEG) 是研究大脑功能和组织的当代方法。同时获取的 MEG-EEG 数据本质上是多维的并表现出耦合。本研究使用耦合张量分解从间歇性光刺激 (IPS) 期间的 MEG-EEG 中提取信号源。我们采用耦合半代数框架通过同步矩阵对角化 (C-SECSI) 进行近似 CP 分解。在使用模拟基准数据将其性能与其他方法进行比较后,我们将其应用于 12 名参与者在 IPS 期间的 MEG-EEG 记录,其中个体 alpha 频率的分数在 0.4 到 1.3 之间。在基准测试中,C-SECSI 比 SECSI 和其他方法更准确,尤其是在病态场景中,例如涉及共线因子或具有不同方差的噪声源。分量场图使我们能够将视觉诱发的大脑活动的生理意义振荡与背景信号区分开来。分量的频率特征可识别出相应刺激频率或其第一谐波的同步,或单个 alpha 波段或 theta 波段的振荡。在对 MEG 和 EEG 数据的组分析中,我们观察到 alpha 和 theta 波段振荡之间存在相互关系。使用 C-SECSI 的耦合张量分解是一种强大的方法,可用于从多维生物医学数据中提取生理意义的源。无监督信号源提取是使先进的多模态信号采集技术可用于临床诊断、术前规划和脑机接口应用的重要解决方案。
聚合物驱动材料的各向异性一维收缩运动引起了从软机器人到仿生肌肉等领域日益增长的兴趣。尽管光驱动液晶聚合物(LCP)是实现远程和空间触发收缩(<20%)的有希望的候选者,但开发具有超大收缩率的 LCP 系统仍然存在许多挑战。这里提出了一种结合形状记忆效应和光化学相变的新策略,在一种新设计的线性液晶共聚物中实现了高达 81% 的光驱动收缩,其中偶氮苯和苯甲酸苯酯的共晶液晶原自组织成近晶 B 相。重要的是,这种高度有序的结构作为开关段牢牢锁住了应力诱导的应变能,该能通过可逆的反式 - 顺式光异构化迅速释放,从而破坏层状液晶相,从而导致这种超大收缩。纤维作为光驱动的构建块,可以实现精确的折纸,模仿“破损”蜘蛛网的恢复,并筛选不同尺寸的物体,为光驱动 LCPs 从仿生机器人到人类助手的高级应用奠定了新的基础。
启动:计算机启动时,首先加载操作系统(因为它对于运行所有其他程序至关重要),此过程称为启动。冷启动:- 当您从关闭位置打开计算机时。热启动:- 当您重置已打开的计算机时。主板:主板作为将计算机的所有部件连接在一起的单一平台。主板直接或通过电缆连接 CPU、内存、硬盘、光驱、视频卡、声卡以及其他端口和扩展卡。它可以被视为计算机的骨干。
个性化外观和声音 ................................................................................33 连接外部显示器 ......................................................................................34 复制桌面 ................................................................................................35 扩展桌面 ................................................................................................35 数据输入 ......................................................................................................36 键盘 .............................................................................................................36 笔记本电脑专用组合键 ......................................................................36 触摸板 ......................................................................................................37 硬盘驱动器 ................................................................................................38 重要目录 ................................................................................................39 光驱 .............................................................................................................40 加载光盘 .............................................................................................................40 紧急弹出阻塞的光盘 .............................................................................42 播放光盘和从光盘检索数据 .............................................................................42 DVD 的区域播放信息 .............................................................................
操作................................................................ 33 鼠标................................................................ 33 键盘................................................................ 33 键盘的校准................................................... 33 Alt 和 Ctrl 键 ........................................ 34 多媒体功能...................................................... 35 鼠标/键盘的重新调整...................................... 36 硬盘驱动器...................................................... 37 重要目录...................................................... 38 光驱...................................................................... 39 加载光盘:.................................................... 40 播放光盘和从光盘检索数据............................ 41 如何取出光盘:.................................................... 41 CD-Rom/DVD 驱动器作为启动驱动器................................ 41 DVD 技术...................................................... 42 有关 CD/DVD 刻录机的主题............................ 44 可刻录/可重写光盘............................................. 44 读卡器............................................................. 45 显卡............................................................. 46 性能特征............................................................. 46 当前图像播放频率................................ 46 将电脑连接至电视机................................ 47
读取或写入光盘数据的过程。光盘、DVD 和蓝光光盘是常见的光学介质类型,可以通过此类驱动器读取和记录。光驱是通用名称;驱动器通常被描述为“CD”、“DVD”或“蓝光”,后跟“驱动器”、“刻录机”等。光学介质主要有三种类型:CD、DVD 和蓝光光盘。CD 最多可以存储 700 兆字节 (MB) 的数据,DVD 最多可以存储 8.4 GB 的数据。蓝光光盘是最新类型的光学介质,最多可以存储 50 GB 的数据。这种存储容量明显优于软盘存储介质
能够自我维持定向运动的人工系统在开发许多具有挑战性的应用方面具有很高的兴趣,包括医疗和技术应用。在合成生物学的背景下,自下而上地组装这样的系统仍然是一项具有挑战性的任务。在这里,我们通过将光可切换的光合囊泡与脱膜鞭毛相结合,展示了人工光驱动能量模块和运动功能单元的生物相容性和效率,从而在光照时为运动蛋白分子马达提供 ATP。鞭毛推进与其拍打频率相结合,光能触发的 ATP 动态合成使我们能够根据光照控制鞭毛的拍打频率。与不同的生物构件(如生物聚合物和分子马达)相结合的光能功能化囊泡可能有助于自下而上地合成人工细胞,这些细胞能够经历马达驱动的形态变形并以光可控的方式表现出定向运动。
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
摘要:光点击反应结合了光驱动过程和传统点击化学的优势,已在表面功能化、聚合物共轭、光交联和蛋白质标记等多个领域得到应用。尽管取得了这些进展,但大多数光点击反应对紫外光的依赖性对其普遍应用造成了严重障碍,因为这种光可能会被系统中的其他分子吸收,导致其降解或发生不必要的反应。然而,开发一种简单有效的系统来实现红移光点击转换仍然具有挑战性。在这里,我们引入了三重态-三重态能量转移作为一种快速而选择性的方式来实现可见光诱导的光点击反应。具体而言,我们表明,在催化量(少至 5 mol%)的光敏剂存在下,9,10-菲醌 ( PQ s) 可以与富电子烯烃 ( ERA ) 有效反应。光环加成反应可以在绿光(530 nm)或橙光(590 nm)照射下实现,与经典的PQ-ERA体系相比,红移超过100 nm。此外,通过组合适当的反应物,我们建立了正交的蓝光和绿光诱导的光点击反应体系,其中产物的分布可以通过选择光的颜色来精确控制。