安迪·斯特林教授是萨塞克斯大学科学政策研究部的科学技术政策教授。他特别关注科学和社会中的权力、不确定性和多样性问题,曾担任英国、欧盟和联合国能源政策、有毒物质、转基因作物、科学建议、公众参与、科学建议和社会转型机构的成员。除了过去在绿色和平组织工作外,他还为皇家学会、纳菲尔德理事会和欧洲科学基金会提供咨询。作为英国社会科学院院士,他曾担任 ESRC 研究委员会成员和 2021 年英国“研究卓越框架”成员。他最近担任英国政府核创新计划官方评估的独立顾问。菲尔·约翰斯通博士是萨塞克斯大学科学政策研究部 (SPRU) 的高级研究员。他目前从事深度转型实验室项目,并担任萨塞克斯首席研究员,该项目与金融投资者合作,帮助开发可持续发展的变革性投资方法。多年来,菲尔研究过许多主题,包括能源转型、逐步淘汰政策、国家理论、战争和军事等冲击在社会技术变革中的作用,以及长期研究核政策,特别是与军民相互依存相关的核政策。他参与了许多政府调查,包括威尔士核政策、深层地质处置和欣克利角 C 核电站。2024 年 3 月 英国约克大学 封面照片:英国萨默塞特欣克利角 C 核反应堆的建设。
(a)通过不同量子门对Pauli运营商(Pauli String)产品的示例转换。单个Pauli字符串𝐼(1)𝜎(2)Z z(3)x𝐼(4)𝐼(4)𝐼(5)被Clifford Gate映射到另一个Pauli字符串中,或通过非clifford门的多个Pauli Strings(未显示)的多个Pauli Strings(未显示的系数)映射到另一个Pauli字符串。(b)单个随机电路实例的OTOC C,用𝑈ˆ,n WV中的非克利福德门的数量测量,固定在不同的值下。虚线是数值模拟结果。对于每个电路,在Q B和Q 1的光锥之间的相交中,在随机位置注入非clifford门。插图显示了Q A(黑色未填充的圆圈),Q 1(黑色填充圆圈)和Q B(蓝色填充圆圈)以及获取数据的电路周期的数量。此处以及图。4,省略了误差线,因为采集了足够数量的样本以确保统计不确定性≤0.01(36)。(c)对于不同的N WV,C的平均值𝐶⎯⎯⎯(顶部)和RMS值C的ΔC(底部)。虚线是从(b)中的数值模拟值计算的。(插图)用于实验电路的时间进化运算符中的Pauli字符串的数值计算的Pauli字符串的平均数量。虚线是指数拟合,𝑛p≈20.96𝑁wv。HybrIDQ用于模拟53个Quarbits,该Qubits用32个非克利福德门模拟。
Orange Grove 小学是一所小型都市学校,坐落在比克利水库附近达令悬崖边缘的美丽乡村环境中。我们的学校建于 1923 年,历史悠久,令人骄傲。虽然传统是我们文化的重要组成部分,但我们的重点是为孩子们的未来做好准备。学校招收从幼儿园到 6 年级的学生,拥有一支敬业的教育工作者团队,致力于与社区合作,提供高质量的教育。学校董事会在指导学校方面发挥着积极作用,而家长和公民团体则合作开展活动,以支持学校并鼓励家长和社区参与。
出处:1919年4月7日,巴黎的第三次Degas房地产销售出售。44a;朱尔斯·施特劳斯(Jules Strauss)在上面购买;到1924年至少1939年,与罗杰·萨尔巴赫(Roger Sauerbach)在一起。到1954年,与巴塞尔的Galerie Le Torets一起;与吉尔伯特·卡恩(Gilbert Kahn);他的出售1960年5月4日,苏富比的伦敦,NR。185,由伦敦的克利福德·巴克莱(Clifford Barclay)购买;伦敦私人收藏;理查德·赛策(Richard Cyzer),伦敦; 2004年被盖蒂(Getty)收购
能源消耗的主要来源是斯托克利公园的服务式办公场所。,我们已经努力通过常规的便携式设备测试来减少能源消耗,以确保由于任何有缺陷的设备鼓励员工在不使用这些工具时限制过多的能源消耗。我们还将通过Stockley Park Management共同探索可能性,即在办公室内改用更有效的LED灯。我们建议员工考虑购买电动汽车(EV)以减少员工拥有的车辆的排放。我们还实施了办公废物的回收政策。将来我们计划采取进一步的措施,例如:可持续货运和物流
晶体管诞生 75 周年(从“跨阻放大器”缩写为“跨阻器”再缩写为“晶体管”)。时光飞逝。这是一个非凡的量子物理学小片段。2022 年,晶体管将像病毒一样大小,速度几乎与光速一样快,而且重要的是,它们巧妙地拥有放大这一独特黄金属性,可使微小的电压和电流变得更大。到 2022 年,地球上将有超过 10 24 个晶体管,这得益于摩尔定律所体现的令人瞠目结舌的指数增长模式。晶体管在现代生活中无处不在,无论技术提供者还是消费者是否看到它们。当然,“晶体管”一词应该添加到地球上每个人的词汇表中。同样,从智能手机到汽车、飞机、互联网、GPS,所有现代技术,如果从地球上消失,无一例外都会立即停止运行。事实上,就其对人类文明轨迹的影响而言,人们可以公平地说,晶体管的发明是人类历史上最重要的发现。这话很大胆,但有理有据 [1]。1947 年底,巴丁和布拉顿在贝尔实验室使用点接触装置首次观察到了晶体管的作用。这次固态放大器的演示在历史记录中也是独一无二的,因为我们可以精确地定位它——1947 年 12 月 23 日下午 5 点左右。正是在那一刻,世界发生了不可逆转的变化。新泽西州默里山正下着雪。肖克利不甘示弱,到 1948 年 2 月,“晶体管三人组”中的第三位成员肖克利开发出了晶体管。
代数方式:克利福德、海森堡和狄拉克对量子基础的遗产。BJ Hiley。2024 年 3 月 1 日摘要。罗杰·彭罗斯两周前的演讲得出结论,广义相对论(等效原理)和量子力学(叠加原理)的基本原理之间的冲突导致了两个现实,一个是经典的,一个是量子的。该论点基于薛定谔图景。在这次演讲中,我着手表明,如果使用海森堡图景,那么只有一个现实。论证从海森堡群结构开始,该结构具有经典和量子域的基本正交和辛对称性。克利福德认识到群在古典物理学中的作用,它在产生众所周知的正交泡利、狄拉克和彭罗斯扭子代数方面起着根本性的作用。辛对称性隐藏在冯·诺依曼的一篇被忽视的论文中,而冯·诺依曼实际上发现了 Moyal 星积代数。冯·诺依曼的论文导致了 Stone-von Neumann 定理,该定理表明,各种图像、薛定谔、海森堡、相互作用等在幺正变换下是等价的。我将展示 Bohm 版本的非相对论薛定谔方程是如何从星积代数中产生的。该乘积必然会引入一种新的能量质量,即“量子势能”,DeWitt (1952) 表明其几何起源与标量曲率张量有关。该结构揭示了共形重标度出现背后的原因,希望能够更好地理解静止质量问题。
这项工作是在气候工人基金会,能源基金会,海辛·西蒙斯基金会和惠普基金会的慷慨支持下进行的。作者要感谢Bill Van Amberg和Michael Joseph(Calstart),David Schaller,David Schaller(北美货运效率委员会),Diego Quevedo(戴姆勒卡车北美),杰米·邓克利(Jamie F. Dunckley)(电力研究所) Michelle Meyer,Hongyang Cui,Hussein Basma和Marie Rajon Bernard(国际清洁运输委员会)在准备本报告时,以指导和建设性评论。他们的评论并不意味着对本报告内容的任何认可。
纠缠在推动我们对量子多体系统的理解的推动中发挥了重要作用[1,2]。然而,多年来,人们越来越明显地,仅纠缠无法捕获将量子与经典系统区分开的每个功能[3,4]。最相关的例子是这样的事实,即仅纠缠并不能够避免所谓的量子至高无上[5]。的确,可以通过克利福德门制成的电路从完全分解的状态中获得几个高度纠缠的量子状态[6,7],即一系列可以在古典计算机上有效模拟的操作。以非Clifford资源的价格和指数增量在古典计算机上模拟量子电路的难度[5,8]。
1 日本大阪大学微生物疾病研究所实验基因组研究系,2 日本大阪大学医学研究生院,3 美国德克萨斯州休斯顿贝勒医学院药物发现中心,4 美国德克萨斯州休斯顿贝勒医学院病理学和免疫学系,5 日本大阪大学药学研究生院,6 日本名古屋名古屋市立大学医学研究生院比较与实验医学系,7 日本茨城县筑波市筑波大学医学院解剖学与胚胎学系,8 美国德克萨斯州休斯顿休斯顿大学克利尔莱克分校生物与生物技术系,9 日本东京大学医学科学研究所