肿瘤抑制剂TP53经常在癌症中以突变的方式灭活,并通过抑制其阴性调节剂来重新激活。我们在这里cotarget MDM2和核出口XPO1至p53的最大转录活性。MDM2/XPO1抑制积累了核p53,并引起其转录靶标25至60倍。TP53调节MYC,MDM2/XPO1抑制作用破坏了C- MYC调节的转录组,从而导致急性髓样白血病(AML)的凋亡的协同诱导。出乎意料的是,耐Venetoclax的AML表达高水平的C-MYC,并且容易受到MDM2/ XPO1抑制体内的抑制作用。然而,MDM2/XPO1抑制后持续存在的AML细胞表现出静止和应激反应 - 相关表型。venetoclax克服了这种抗性,如单细胞质量旋转术所示。MDM2,XPO1和BCl2的三重抑制作用非常有效,对抗Venetoclax的AML体内。我们的结果提出了一种新型的,高度可翻译的治疗方法,利用p53重新激活以过度反应,反应适应压力的静脉抗体耐药性。
摘要:前列腺癌(PCA)经常变得耐药,对有效的管理提出了重要的挑战。尽管对雄激素剥夺治疗的初始治疗可以控制晚期PCA,但随后的耐药机制允许肿瘤细胞继续生长,需要采取替代方法。这项研究深入研究了不同PCA亚型的特定代谢依赖性,并探讨了结合雄激素受体(AR)抑制(ARN具有线粒体复合物I抑制(IACS))的潜在协同作用。我们检查了正常前列腺上皮细胞(PNT1A),雄激素敏感细胞(LNCAP和C4-2)的代谢行为以及与雄激素独立的细胞(PC-3)使用ARN,IACS或组合时。结果发现了跨PCA亚型的不同线粒体活性,雄激素依赖性细胞表现出增强的氧化磷酸化(OXPHOS)。在多个PCA细胞系中,ARN和IACS辅助细胞增殖的结合。细胞生物能分析表明,IACS减少了OXPHOS,而ARN阻碍了某些PCA细胞中的糖酵解。另外,送乳糖补充破坏了代谢重编程引起的补偿性糖酵解机制。值得注意的是,葡萄糖抑制条件提高了PCA细胞对线粒体抑制的敏感性,尤其是在抗性PC-3细胞中。总体而言,这项研究阐明了PCA中AR信号传导,代谢适应性和治疗耐药性之间的复杂相互作用。这些发现提供了对亚型特异性代谢纤维文件的有价值的见解,并提出了一种有前途的策略,通过利用其代谢脆弱性来靶向PCA细胞。
研究人员在研究中得出了令人惊讶的发现,STING 激活剂增加了调节性 B 细胞(一种白细胞)的数量。调节性 B 细胞会抑制而不是增加抗癌免疫力,因此会阻碍肿瘤免疫治疗。他们进一步表明,这些细胞会分泌白细胞介素 35 (IL-35),这是一种会削弱抗肿瘤免疫力的免疫抑制分子。胰腺癌患者的 B 淋巴细胞中也发现了 STING 激活的调节性 B 细胞 IL-35 产生,这强调了这些发现与人类的潜在相关性。在小鼠模型中,通过将激活 STING 的药物与阻断 IL-35 的抗体配对,研究人员实现了肿瘤生长的显著减少,与仅使用 STING 激活剂或 IL-35 抗体相比。
4。Braun,T。P.,Eide,C。A.&Druker,B。J。对BCR-ABL1靶向疗法的反应和抗性。癌细胞卷。37 530–542预印本在https://doi.org/10.1016/j.ccell.2020.03.006(2020)。5。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J. 蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J.蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。蛋白激酶和磷酸酶的调节和功能。酶研究卷。2011预印本在https://doi.org/10.4061/2011/794089(2011)。6。Bhullar,K。S.等。以激酶为目标的癌症疗法:进步,挑战和未来的方向。分子癌卷。17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。7。Grant,S。K.治疗蛋白激酶抑制剂。细胞和分子生命科学卷。66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。8。Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。循环研究卷。106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。9。Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。国际分子科学杂志卷。24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。24预印本在https://doi.org/10.3390/ijms242417600(2023)。10。Pottier,C。等。癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。11。癌症卷。12 https://doi.org/10.3390/cancers12030731(2020)的预印本。Barouch-Bentov,R。&Sauer,K。激酶中耐药性的机制。有关研究药物的专家意见。20 153–208预印本在https://doi.org/10.1517/13543784.2011.546344(2011)。12。Lin,J。J. &Shaw,A。T.抵抗力:肺癌的靶向疗法。 癌症趋势。 2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Lin,J。J.&Shaw,A。T.抵抗力:肺癌的靶向疗法。癌症趋势。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。13。de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。de Santis,S。等。克服对激酶抑制剂的抗性:慢性髓样白血病的范例。Oncotargets and Therapy Vol。15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。14。Drilon,A。等。下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。癌症Discov 7,963–972(2017)。15。Schoepfer,J。等。发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。J Med Chem 61,8120–8135(2018)。16。OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。OU,X.,Gao,G.,Habaz,I。A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。Medcomm,5(9),E694。https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。https://doi.org/10.1002/mco2.694(2024)。17。Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Cohen,P。,Cross,D。&Jänne,P.A。伊马替尼20年后的激酶药物发现:进步和未来方向。nat Rev Drug Discov 20,551–569。https://doi.org/10.1038/s41573-021-00195-4(2021)。18。Leonetti,A。等。 在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Leonetti,A。等。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。英国癌症杂志卷。121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。19。Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Teuber,A。等。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。nat Commun 15,(2024)。20。Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。肿瘤/血液学的批判性评论卷。171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。21。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。生物医学和药物治疗卷。150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。
利比亚可再生能源发展面临诸多障碍,阻碍其进步。本文旨在找出这些障碍并提出有效的策略来克服它们。根据文献综述和专家意见,确定了八个障碍:缺乏基础设施、依赖化石燃料、缺乏稳定的投资环境、政治不稳定、监管框架薄弱、环境条件多变、缺乏公众意识和技术障碍。使用层次分析法 (AHP) 计算这些障碍的权重。结果表明,缺乏基础设施是最关键的障碍,其次是对化石燃料的依赖。提出了七种策略来克服这些障碍:鼓励私营部门投资、提供财政激励、加强监管框架、能力建设、提高公众意识、技术转让和国际合作。使用组合折衷解决方案 (CoCoSo) 方法根据这些策略的有效性对其进行排序。结果表明,鼓励私营部门投资是克服障碍的最重要策略。本文的研究结果可以帮助利比亚的决策者做出正确的决策并有效分配资源,以克服已发现的障碍并促进可再生能源的发展。此外,本文还为在可再生能源发展方面面临类似挑战的其他国家提供了见解。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
* 通讯作者电子邮箱:walink@iib.uam.es (WL);romano.silvestri@uniroma1.it (RS)。本文发表于《药物耐药性更新》(Elsevier,2021 年),第 100788 页。DOI:10.1016/j.drup.2021.100788 此版本为作者版本。摘要许多癌症患者经常对抗癌治疗没有反应,因为治疗耐药性是治愈癌症治疗的主要障碍。因此,确定耐药性的分子机制具有至关重要的临床和经济意义。基于对癌症的分子理解的靶向疗法的出现可以作为克服耐药性策略的模型。因此,鉴定和验证与耐药机制密切相关的蛋白质代表了一条通往创新治疗策略的道路,以改善癌症患者的临床结果。在这篇综述中,我们讨论了新兴靶点、小分子疗法和药物输送策略,以克服治疗耐药性。我们专注于基于转录因子、假激酶、核输出受体和免疫原性细胞死亡策略的合理治疗策略。从历史上看,未配体的转录因子和假激酶被认为是不可药用的,而通过抑制核输出受体 CRM1 来阻断核输出则被认为具有高度毒性。最近成功抑制 Gli HIF-1α、HIF-2α 并重新激活肿瘤抑制转录因子 p53 和 FOXO 说明了这种靶向方法的可行性和强大性。同样,在调节与治疗耐药性有关的假激酶蛋白(包括 Tribbles 蛋白家族成员)的活性方面也取得了进展。另一方面,Selinexor 是一种 CRM-1 的特异性抑制剂,CRM-1 是一种介导富含亮氨酸的核输出信号货物运输的蛋白质,已知是药物耐药性的驱动因素,它代表了抑制核输出作为克服治疗耐药性的可行策略的概念验证。
建立稳健且无条件安全的量子网络的主要要求是在现实信道上建立量子非局域相关性。虽然无漏洞的贝尔非局域性测试允许在这种与设备无关的环境中进行纠缠认证,但它们对损失和噪声极为敏感,而这些损失和噪声在任何实际通信场景中都会自然出现。量子转向通过以不对称的方式重新构建贝尔非局域性,放松了其严格的技术限制,仅在一侧有一个可信方。然而,量子转向测试仍然需要极高质量的纠缠或非常低的损失。在这里,我们介绍了一种量子转向测试,它利用高维纠缠的优势,同时具有抗噪性和抗损失性。尽管我们的转向测试是为量子比特构建的,但它是为单探测器测量而设计的,能够以时间高效的方式弥补公平采样漏洞。我们通过实验演示了多达 53 个维度的量子控制,摆脱了公平采样漏洞,同时实现了损耗和噪声条件,相当于 79 公里电信光纤的 14.2 dB 损耗和 36% 的白噪声,从而展示了相对于基于量子比特的系统所取得的改进。我们继续展示了高维度的使用如何反直觉地大幅缩短总测量时间,使量子控制违规几乎快了 2 个数量级,而只需将希尔伯特空间维度加倍即可实现。我们的工作最终证明了高维纠缠在损耗、噪声和测量时间方面为量子控制提供了显著的资源优势,并为具有终极安全性的实用量子网络打开了大门。
Rawand Masoud, 1,3,* Gabriela Reyes-Castellanos, 1,3 Sophie Lac, 1,4 Julie Garcia, 1 Samir Dou, 1 Laetitia Shintu, 2 Nadine Abdel Hadi, 1 Tristan Gicquel, 1 Abdessamad El Kaoutari, 1 Binta Die´ me´, 2,5 Fabrice Tranchida, 2 Laurie Cormareche, 1 Laurence Borge, 1 Odile Gayet, 1 Eddy Pasquier, 1 Nelson Dusetti, 1 Juan Iovanna, 1 和 Alice Carrier 1,6,* 1 艾克斯马赛大学、CNRS、INSERM、Paoli-Calmettes 研究所、马赛癌症研究中心 (CRCM)、F-13009 马赛,法国 2 艾克斯马赛大学、CNRS、马赛中央理工学院、ISM2、F-13013法国马赛 3 这些作者贡献相同 4 现地址:Innate Pharma,F-13009 马赛,法国 5 现地址:克莱蒙费朗化学研究所,PlateForme d’Exploration du Metabolisme (PFEM),克莱蒙奥弗涅大学,F-63000 克莱蒙费朗,法国 6 主要联系人 *通信地址:masoud.rawand@gmail.com (RM)、alice.carrier@inserm.fr (AC)
政府和其他机构应寻求为开发商和地方当局提供更一致的一致性。国家消防局委员会目前正在更新与消防安全和贝斯项目有关的指南。政府应寻求促进这一指导和其他工具,以使开发人员更加一致性,并更加放心。