。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要由于树木的常规育种和克隆繁殖作物所固有的局限性,因此基因编辑引起了极大的兴趣。数十篇已发表的论文证明了克隆作物和树木中基于CRISPR的系统的高效率。预计“清洁”编辑的机会将避免或减轻许多国家的监管负担,并可能改善市场接受。然而,迄今为止,几乎所有对树木和克隆作物的研究都保留了基因组中的所有基因编辑机制。尽管基因编辑效率很高,但技术和监管障碍可能会极大地限制商业用途的进展。技术障碍包括困难和缓慢的转化和再生,开花或克隆系统的延迟发作,这些系统使CRISPR相关基因的性隔离变得难度,效率低下的切除系统可以启用功能性(蛋白质或RNA加密的蛋白质或RNA加密DNA),以及狭窄的宿主范围或有限的基因范围或有限的基因上的变速器系统。调节性障碍包括诸如基因编辑植物(如转基因作物)的欧盟中,以及基于方法的许多形式的基于方法的系统,这些系统基于方法与产品新颖性进行了严格调节,因此很大程度上应用于每个插入事件。其他主要障碍包括关于国际贸易方案的规定以及对美国国家环境政策法的遵守情况。《 USDA Secure Act》已迈出了基于科学和风险的更大的一步 - 基于方法和插入事件 - 系统,但在美国及其他地区需要进一步的监管和法律创新。
《自然》杂志的一项研究报告了酵母酿酒酵母作为组装和维护各种 RNA 病毒基因组(包括 SARS-CoV-2)的平台的适用性,该平台可实现对 SARS-CoV-2 的基因操作和功能表征。在疫情爆发期间,病毒分离株可用于开发诊断、体内模型、抗病毒疗法和疫苗。如果病毒分离株的可用性有限,可以从化学合成的 DNA 中克隆病毒基因组,但使用大肠杆菌的既定方法通常不足以容纳冠状病毒(冠状病毒科)等 RNA 病毒的大型基因组。Thao 等人将转化相关重组 (TAR) 克隆应用于含有 GFP 基因的小鼠肝炎病毒 (MHV),该病毒具有成熟的反向遗传学平台。将覆盖 MHV-GFP 基因组和 TAR 载体的重叠 DNA 片段转化到酵母中,DNA 片段通过同源重组组装,产生包含全长病毒 cDNA 的酵母人工染色体 (YAC)。值得注意的是,90% 以上的筛选克隆显示 YAC 组装正确,表明组装效率高。通过分离和线性化 YAC 进行体外转录以生成病毒 RNA,成功从两个单个克隆中回收了传染性病毒,然后将其与编码 MHV 核衣壳蛋白的 mRNA 一起转染到 BHK-MHV-N 仓鼠细胞系中,以产生和扩增病毒。回收的病毒表现出与亲本 MHV-GFP 相同的复制动力学。该团队着手确定合成基因组学平台是否可以应用于 MERS-CoV,使用低拷贝细菌人工染色体 (BAC) 从八个重叠的 PCR 扩增 DNA 片段克隆病毒。该方法还应用于突变的 MERS-CoV 克隆,该克隆中插入了 GFP 基因。YAC 克隆组装和从克隆 DNA 中拯救病毒均取得成功,确定了该平台可适用于更广泛的病毒,包括转基因病毒基因组。进一步的实验确定病毒基因组可以稳定维持,并且该平台适用于其他难以克隆的病毒,例如寨卡病毒(黄病毒科)和人类呼吸道合胞病毒(副粘病毒科),包括直接从临床样本中克隆,而无需事先了解病毒基因型。令人惊讶的是,在收到基于 2020 年 1 月发布的基因组序列的 SARS-CoV-2 合成 DNA 片段后 1 周内,就实现了重组 SARS-CoV-2 和 SARS-CoV-2-GFP 的克隆和拯救。总之,这项研究展示了合成基因组学平台在疫情期间从不同起始材料(包括病毒分离物、克隆 DNA、合成 DNA 或临床样本)快速生成和功能表征进化 RNA 病毒的实用性。
本出版物中的信息“原样”提供了。戴尔公司(Dell Inc.本出版物中描述的任何软件的使用,复制和分发都需要适用的软件许可。本文档可能包含某些与戴尔当前语言指南不符的单词。Dell计划在随后的未来发布中更新文档,以相应地修改这些单词。本文档可能包含来自第三方内容的语言,这些语言不受戴尔的控制,并且与戴尔当前有关戴尔自己内容的准则不一致。当相关第三方更新此类第三方内容时,将相应修订本文档。版权所有©2016-2021 Dell Inc.或其子公司。保留所有权利。Dell Technologies,Dell,EMC,Dell EMC和其他商标是Dell Inc.或其子公司的商标。其他商标可能是其各自所有者的商标。[6/21/2021] [技术白皮书] [H15089.7]
该项目是机器学习域,并且使用高级通用编程语言Python完成了实现。我们的目标是设计一个模型För,根据用户选择将任何文本转换为两个步骤,即克隆目标语音和文本到语音综合的声音。我们比较了三个模型,发现SV2TTS符合我们的要求。尽管我们可以理解,语音克隆是滥用该技术的可能性的领域,但我们也不能否认合成文本是高科技的进步和人为形成的语音形成,鉴于要说的文本。
1。Hong,M。Et。 al。,杆状病毒insect细胞系统的基因工程,以改善蛋白质的产生。 正面。 Bioeng。 Biotechnol。,2022。 2。 MA,H。等。 al。,Spodoptera frugiperda SF9细胞系是色夫病毒感染和病毒阴性细胞的异质种群:含有色齿病毒X基因变体和病毒阴性细胞Clone的细胞克隆的分离和表征。 病毒学,2019年。 3。 Brogee,P。,朝向C31INIT具有能力的SF9细胞系的发展。 UWSpace,2018年。 4。 Zitzmann,J。等。 al。,单细胞克隆可以选择更有生产力的果蝇Melanogaster S2细胞以进行重组蛋白表达。 生物技术。 REP。,2018。Hong,M。Et。al。,杆状病毒insect细胞系统的基因工程,以改善蛋白质的产生。正面。Bioeng。Biotechnol。,2022。2。MA,H。等。 al。,Spodoptera frugiperda SF9细胞系是色夫病毒感染和病毒阴性细胞的异质种群:含有色齿病毒X基因变体和病毒阴性细胞Clone的细胞克隆的分离和表征。 病毒学,2019年。 3。 Brogee,P。,朝向C31INIT具有能力的SF9细胞系的发展。 UWSpace,2018年。 4。 Zitzmann,J。等。 al。,单细胞克隆可以选择更有生产力的果蝇Melanogaster S2细胞以进行重组蛋白表达。 生物技术。 REP。,2018。MA,H。等。al。,Spodoptera frugiperda SF9细胞系是色夫病毒感染和病毒阴性细胞的异质种群:含有色齿病毒X基因变体和病毒阴性细胞Clone的细胞克隆的分离和表征。病毒学,2019年。3。Brogee,P。,朝向C31INIT具有能力的SF9细胞系的发展。UWSpace,2018年。4。Zitzmann,J。等。al。,单细胞克隆可以选择更有生产力的果蝇Melanogaster S2细胞以进行重组蛋白表达。生物技术。REP。,2018。REP。,2018。
PEI Z,Deng K,Xu C,ZhangS。减数分裂阻滞和恢复卵母细胞发育和成熟的分子调节机制。再生生物内分泌。2023年10月2日; 21(1):90。Rabbani M,Zheng X,Manske GL,Vargo A,Shami AN,Li JZ,Hammoud SS。解码精子发生程序:转录组分析的新见解。Annu Rev Genet。2022 11月30日; 56:339-368。Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。细胞开发。2023年9月; 175:203865。Coxir SA,Costa GMJ,Santos CFD,Alvarenga Rlls,Lacerda SMDSN。从体内到体外:探索人配子发生的关键分子和细胞方面。嗡嗡声单元。2023 Jul; 36(4):1283-1311。Vargas LN,Silveira MM,Franco MM。表观遗传重编程和体细胞核转移。方法mol biol。2023; 2647:37-58。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。 雄科。 2023 Jul; 11(5):918-926。 Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。 女性的卵子发生:从分子调节途径和母体年龄到干细胞。 int J Mol Sci。 2023 Apr 6; 24(7):6837。 Hermann BP,Oatley JM。 简介:为什么以及如何研究精子发生和精子干细胞。 方法mol biol。 2023; 2656:1-6。 EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。雄科。2023 Jul; 11(5):918-926。Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。女性的卵子发生:从分子调节途径和母体年龄到干细胞。int J Mol Sci。2023 Apr 6; 24(7):6837。Hermann BP,Oatley JM。简介:为什么以及如何研究精子发生和精子干细胞。方法mol biol。2023; 2656:1-6。EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。EUR UROL重点。2023 JAN; 9(1):46-48。细胞开发。2023年9月; 175:203865。Ramsoomair CK,Alver CG,Flannigan R,Ramasamy R,Agarwal A.精子干细胞和体外精子生成:我们离碎屑上的人睾丸有多远?Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。Davis GM,Hipwell H,Boag PR。 秀丽隐杆线虫中卵子发生。 性爱。 2023; 17(2-3):73-83。 Irie N,Lee SM,Lorenzi V,Xu H等。 DMRT1调节人类种系承诺。 NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Davis GM,Hipwell H,Boag PR。卵子发生。性爱。2023; 17(2-3):73-83。Irie N,Lee SM,Lorenzi V,Xu H等。DMRT1调节人类种系承诺。NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。NAT细胞生物。2023年10月; 25(10):1439-1452。Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Jabari A,Gholami K,Khadivi F等。使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。Int J Biol Macromol。2023 Apr 30; 235:123801。Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。Adv Biol(Weinh)。2023 Jul; 7(7):E2200322。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。Sertoli细胞是精子发生的干细胞因子的来源。开发。2023 3月15日; 150(6):DEV200706。Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Seita Y,Cheng K,McCarrey JR等。使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Elife。2023 JAN 31; 12:E82263。seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。方法mol biol。2023; 2656:145-159。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。 人类原始卵泡形成过程中的细胞 - 细胞相互作用。 生命科学联盟。 2023 8月29日; 6(11):E202301926。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。人类原始卵泡形成过程中的细胞 - 细胞相互作用。生命科学联盟。2023 8月29日; 6(11):E202301926。
1。Xu Y,Chiang YH,HO PC,Vannini N:线粒体决定HSC和T细胞的功能和命运。2023 CANCAR IMMUNOL RES 2。Girotra M, Chiang YH, Charmoy M, Ginefra P, Hope HC, Bataclan C, Yu YR, Schyrr F, Franco F, Geiger H, Cherix S, Ho PC, Naveiras O, Auwerx J, Held W, Vannini N: Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune系统。2023 NAT老化3。Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。 2020 NAT ProtoC 4。 Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。 Hennig C:_FPC:clustering_的灵活过程。 2024 cran.r- project.org/package=fpc 6。 Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。 2023 cran.r-project.org/package=cluster 7。 Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。的剂量反应分析 Landrum G等人:RDKIT:开源化学信息学。 2024 doi.org/10.5281/zenodo.591637Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。2020 NAT ProtoC 4。Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。Hennig C:_FPC:clustering_的灵活过程。2024 cran.r- project.org/package=fpc 6。Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。2023 cran.r-project.org/package=cluster 7。Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。Landrum G等人:RDKIT:开源化学信息学。2024 doi.org/10.5281/zenodo.591637
同种异体造血细胞移植(HCT)用供体1,2的患者代替了负责血液产生的干细胞。在这里,为了量化长期干细胞植入的动力学,我们测序了来自2,824个单细胞衍生的造血菌落的基因组,该菌落是十个供体 - recipient对的hla匹配sibling sibling sibling hct 3后9-31年进行的。与年轻的捐助者(移植期18-47年),有5,000-30,000个干细胞植入了,在采样时仍在为造成造血症。年龄较大的捐助者(50 - 66年)的估计低十倍。植入的细胞对髓样,B淋巴样和T淋巴样群体产生了多肾化贡献,尽管单个克隆经常对一种或其他成熟的细胞类型表现出偏见。接受者的克隆多样性低于匹配的捐助者,相当于大约10 - 15年的额外衰老,这是干细胞克隆的扩张大约25倍。与移植相关的种群瓶颈无法解释这些差异。取而代之的是,系统发育树认为HCT特异性选择的两种不同模式。在修剪选择中,供体富含克隆的克隆扩张的基础细胞分裂发生在供体中,在移植之前,即从优先动员,收集,生存的离体或初始归巢中获得的选择性优势。在生长选择中,植入后的受体骨髓中发生了克隆膨胀的基础细胞分裂,最明显的是具有多个驱动器突变的克隆。与捐助者的不受干扰的造血相比,从本地环境中拔起干细胞并将其移植到异物中会夸大选择性压力,使克隆多样性的丧失扭曲和加速。