摘要:未培养噬菌体对环境的影响取决于其首选的生命周期(溶菌性或溶源性)。然而,我们预测它的能力非常有限。我们旨在通过比较溶菌性和溶源性噬菌体的基因组特征与其宿主的相似性来区分溶菌性和溶源性噬菌体,反映它们的共同进化。我们测试了两种方法:(1)四聚体相对频率的相似性,(2)基于精确的 k = 14 寡核苷酸匹配的无比对比较。首先,我们探索了 5126 种参考细菌宿主菌株和 284 种相关噬菌体,并找到了使用两种基于寡核苷酸的方法区分溶源性和溶菌性噬菌体的近似阈值。对 6482 个质粒的分析揭示了不同宿主属之间以及在某些情况下远距离细菌类群之间水平基因转移的可能性。随后,我们通过实验分析了 138 株肺炎克雷伯菌及其 41 种噬菌体的组合,发现实验室中与这些菌株相互作用次数最多的噬菌体与肺炎克雷伯菌的基因组距离最短。然后,我们将我们的方法应用于来自温泉生物膜的 24 个单细胞,其中包含 41 个未培养的噬菌体-宿主对,结果与在此环境中检测到的噬菌体的溶源生命周期相一致。总之,基于寡核苷酸的基因组分析方法可用于预测 (1) 环境噬菌体的生命周期、(2) 培养物保藏中宿主范围最广的噬菌体,以及 (3) 质粒的潜在水平基因转移。
水质参数会影响致病细菌的丰度。属的气管,弧菌,克雷伯氏菌和分枝杆菌是在废水中鉴定出的代表性途径菌群之一。然而,缺乏有关水质与这些细菌丰度之间相关性的信息,以及它们在现有的废水处理设施(WTF)中的降低率。因此,本研究旨在确定WTF中这些细菌基团的丰度和降低率。从日本和泰国的9个WTF收集了68个样本(34个进水和34个未侵害,处理过的废水样品)。16S rRNA基因扩增子测序分析表明,在所有影响的废水和经过处理的废水样品中,存在气瘤菌,弧菌和分枝杆菌。定量实时聚合酶链反应(QPCR)用于量化气动作,弧菌,克雷伯氏菌肺炎物种复合物(KPSC)和分枝杆菌的丰度。进水废水中空气负体,弧菌,kPSC和分枝杆菌的几何平均值为1.2×10 4 - 2.4×10 5,1.0×10 5 - 4.5×10 6,3.6,3.6×3.6×3.6×10 2 - 4.3.3×10 4,以及6.9×10 4,以及6.9×10 3 - 5.5×10 4 4×10 4 4×10 4×4×10 4 4×10 4 4.分别为0.77–2.57,1.00–3.06,1.35–3.11和-0.67–1.57。本研究提供Spearman's rank correlation coefficients indicated significant positive or nega- tive correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile悬浮固体和氧化还原潜力。
细菌感染的负担和疫苗的作用细菌感染是2019年第二大死亡原因,全球总计770万人死亡[1]。超过50%的死亡人数是由五种病原体 - 金黄色葡萄球菌,大肠杆菌,肺炎链球菌,肺炎链球菌,克雷伯氏菌肺炎和假单胞菌 - 铜绿假单胞菌 - 所有这些都与增加的抗抗抗菌抗性相关。疫苗可以减轻抗菌抗性和易感细菌病原体的全球负担。但是,与新疫苗的开发相关的失败率为94%,目前只有十种可用于细菌疾病的可用疫苗[2]。从2022年开始,总共有61名候选疫苗在临床三中,而有94例在细菌疾病的临床前开发中i。尽管如此,技术和经济局限性都有
近来,超过 70% 的鱼被熏制作为保存方法。熏制是一种古老的加工方法,至今在尼日利亚仍广泛使用。本研究调查了从两个不同的鲶鱼养殖场获得的熏制鲶鱼中重金属积累和微生物负荷水平,以确定研究期间在奥沃销售的熏制鲶鱼的安全性。样本采集自位于尼日利亚翁多州奥沃地方政府区奥沃的两个农场(农场 1 和农场 2)。鉴定出的微生物包括链球菌属、金黄色葡萄球菌、芽孢杆菌属、克雷伯氏菌属、铜绿假单胞菌和大肠杆菌。样本 A 和 B 的微生物计数如下:链球菌属(90.0 和 60.0)、金黄色葡萄球菌(160.0 和 170.0)、芽孢杆菌属(230.0 和 215.0)、克雷伯氏菌属(110.0 和 120.0)、铜绿假单胞菌(15.0 和 10.0)和大肠杆菌(2.0 和 1.0)。重金属的浓度分别为 Cu(0.001 和 0.000)、Cd(0.222 和 0.002)、Cr(0.840 和 0.670)、Mn(2.33 和 1.99)和 Zn(132.020 和 127.001)。微生物数量最高的是来自样品 A(230.0)和样品 B(215.0)的芽孢杆菌属,而最低的是来自样品 B(1.0)和样品 A(2.0)的大肠杆菌。在重金属中,锌在两个样品中含量最丰富,样品 A(132.020)的浓度高于样品 B(127.001)。铜含量最低,在样品 A(0.001)中几乎检测不到,在样品 B(0.000)中完全检测不到。该研究揭示了鲶鱼养殖场之间的微生物和重金属污染水平差异。它强调监管机构需要实施湿度控制措施并实施策略以减少可能导致熏制鲶鱼产品中细菌生长和重金属污染的人为活动。
背景:在美容院用来涂抹化妆品的刷子应干净并且不会被任何细菌污染,尤其是因为它们周围是在眼睛,嘴和鼻子周围使用的。如果它们被污染,则可能是可能的感染来源。这项研究旨在评估化妆品刷的污染状态。从亚历山大的美容中心收集了一百个刷子。它们被存储在5 ml营养肉汤中,然后在血液和MacConkey的琼脂上培养,以进行细菌分离和鉴定。所有刷子(100%)被细菌分离株污染。klebsiella spp。是最常见的细菌。它是从84%的刷子中分离出来的,其次是大肠杆菌,分别为6%,杆菌分别为10%。克雷伯菌和大肠杆菌都被认为是潜在的病原体。由于刷子的高污染率,强烈建议您谨慎清洁和去污染这些工具。
被描述为无声的大流行,抗菌抗性(AMR)在2017年被确定为世界卫生组织之一(WHO)的全球十大医疗保健威胁。[1]据估计,AMR在2019年与495万人死亡有关,低收入和中等收入国家(LMIC)的负担不成比例,尤其是在非洲,在非洲,AMR估计与105万人死亡有关。[2,3]最高负担是呼吸道,随后是血液感染。[3]与AMR相关的新生儿死亡超过了大多数非洲国家的年龄段。[3]六种病原体与近100万死亡有关:肺炎链球菌,肺炎克雷伯氏菌,肺炎,埃斯切里希亚大肠杆菌,金黄色葡萄球菌,aacinetoboccus acinetobacter baumannii和pseudomonas erugiginosa。K。肺炎是LMIC的一种更为普遍的生物,在该国家中,大肠杆菌对AMR和相关死亡的贡献更大。[2]
铜绿假单胞菌是一种革兰氏阴性细菌,引起免疫功能低下个体的感染。该病原体是Eskape病原体之一(包括粪肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,baumanii,p.eruginosa,p.eruginosa,肠杆菌,肠杆菌,肠杆菌。),构成威胁生命的医院细菌(Hirsch和Tam,2010; Mulani等,2019)。铜绿假单胞菌还感染患有特定病理的患者,例如囊性纤维化(CF)。由于其形成生物膜的能力,铜绿假单胞菌通常会长期感染CF患者,并代表该疾病的负面结果(Malhotra等,2019)。为了成功地在宿主中建立自己,铜绿假单胞菌部署了一系列毒力因子,包括毒素,铁载体,粘附素和分泌系统(请参阅GONCgonçAlves-alves-de-albuquerque等人的评论,2016; Qin等,2022)。后者允许运输
多药革兰氏阴性细菌感染在全球范围内引起明显的发病率和死亡率。这些病原体很容易获得抗菌耐药性(AMR),进一步强调了它们的临床意义。第三代耐甲状腺孢菌素和耐碳苯甲状腺菌(例如,大肠杆菌和克雷伯斯氏菌SPP),抗多药的铜绿假单胞菌,铜绿假单胞菌,以及耐碳酸苯甲酸杆菌的抗碳酸盐症,并已识别为识别的问题,并且已经识别出了问题。在响应中,已经开发了几种旨在快速检测AMR的新诊断技术,包括生化,分子,基因组和蛋白质组学技术。过去十年还看到了多种抗生素的许可,这些抗生素改变了这些具有挑战性的感染的治疗景观。