克鲁坎发电站位于苏格兰阿盖尔-比特郡,建在本克鲁坎山的空心岩石内。克鲁坎山的历史可以追溯到 1921 年,当时水力资源委员会的最终报告描述了奥湖和南特湖的水力发电计划,以及爱德华·麦考尔爵士随后为苏格兰高地引入水力发电的工作。苏格兰战时国务大臣汤姆·约翰斯顿于 1947 年在议会通过了空心山计划,并于 1959 年开始建设,并与亨特斯顿 A 核电站的开发有关,因为克鲁坎山可用于在夜间储存多余的核电。克鲁坎发电站于 1965 年正式投入使用,四台机组中的最后一台于 1967 年投入使用。它最初由苏格兰北部水电局运营,后来于 1989/90 财年移交给苏格兰电力公司,随后于 1991 年苏格兰电力行业私有化。苏格兰电力公司于 2007 年 4 月被 Iberdrola 收购,Drax 从 Iberdrola 收购了包括克鲁坎在内的资产组合,该交易于 2019 年 1 月 1 日完成。图 6:克鲁坎时间表
Creutzfeldt-Jakob病(CJD)是一种罕见的,快速进行的,无法治愈的神经退行性疾病,由王室引起。它总是致命的,并在可传播的海绵状脑病下分类。该案件报告提出了一名66岁的沙特女性,由于认知能力下降,她被接纳为神经病学部门。患者接受了诊断评估,包括磁共振成像(MRI)和脑电图(EEG)。在住院和社会心理支持的一个月后,患者稳定并随后出院。总而言之,虽然CJD是一种罕见的疾病,但应在患有快速进行性痴呆症的患者的鉴别诊断中考虑。早期和准确的诊断对于将这种不可治疗的疾病与其他可治疗形式的快速进行性痴呆并促进潜在的未来治疗干预措施是至关重要的。
913 LE的“ Kono Miss”是选择!有史以来最佳短暂神秘又名Renjo Mikihiko,Edogawa Ranpo,Takagi Akimitsu,Awasaka tsumao
局部维度为 d > 2 的量子位元可以具有独特的结构和用途,而量子位 (d = 2) 则不能。量子位元泡利算子为量子位元状态和算子的空间提供了非常有用的基础。我们用几种方法研究了任意 d(包括合数)的量子位元泡利群的结构。为了涵盖 d 的合数,我们使用交换环上的模,这推广了场上向量空间的概念。对于任何指定的交换关系集,我们构造一组满足这些关系的量子位元泡利群。我们还研究了互相不交换的泡利集和成对不交换的集的最大大小。最后,我们给出了寻找泡利子群近似最小生成集的方法,计算泡利子群的大小,并找到量子位元稳定器码逻辑算子基的方法。本研究中有用的工具是交换环上的线性代数的范式,包括 Smith 范式、交替 Smith 范式和矩阵的 Howell 范式。这项工作的可能应用包括量子稳定器代码、纠缠辅助代码、超费米子代码和费米子哈密顿量模拟的构建和分析。
开放存取 本文件根据 Creative Commons Attribution 4.0 International License 获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供 Creative Commons 许可证的链接,并指明是否进行了更改。在作者匿名的情况下,例如匿名同行评审员的报告,作者归属应为“匿名审稿人”,然后明确归属源作品。本文件中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0。
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
Dhanur P. Iyer,1,2,10 Heidar Heidari Heidari Khoei,3,10 Vera A. Vera A. Vera A. van der Weijden,1 Harunobu Kagawa,3 Saurabh J. Pradhan,3 Maria Novatchkova,Maria Novatchkova,4 Afshan McCarthy,4 Afshan McCarthy,5 Teresa,5 Teresa Rayon,6 Claire S.Simiss Simon,5 kay simon,5 kay wam wam nunke e e.菲尔·斯内尔(Phil Snell)8岁,8莱拉·克里斯蒂(8 Leila Christie),8 Edda G. Schulz,7 Kathy K. Niakan,5,9 Nicolas Rivron,3,11, *和Aydan Bulut-Karslio Glu 1,11,12, * 1 * 1 * 1干细胞群,基因组调节部,Max Plancky Instituter for Institute for Mereclen and Institute for Mereclan andicmelt of Merecral Genetics,149191919195,149191919191919195弗雷大学柏林生物化学,德国柏林14195年3月3日3月3日,奥地利科学院分子生物技术研究所(IMBA),维也纳生物中心(VBC),维也纳,1030 Vienna,奥地利,奥地利4个分子病理学研究所(IMP)实验室,弗朗西斯·克里克研究所(Francis Crick Institute),伦敦NW1 1AT,英国6表格遗传学和信号计划,Babraham Institute,Babraham Research Campus,Babraham Research Campus,Cambridge CB22,UK 7 Systems Epegenetics,Otto-Warburg-Laboratories,Max Planck-Lanck-Laboratories,Max Planck commular commular遗传学,14195 Bernany,Bernany,Burnany,Burnany,Burnany,Burn bernany,Burnany 8 CB23 2TN,UK 9 9剑桥大学,剑桥大学,剑桥CB2 3EG,英国剑桥大学生理学,发展与神经科学系滋养细胞研究中心,这些作者同样贡献了11个作者,这些作者同样贡献了12个潜在客户联系人 *通讯 *通信 *通讯:Nicolas.rivron@imba.oeaw.ac.ac.at(N.R.),aydan.karslioglu@molgen.mpg.de(A.B.-K.)
该概念的核心是微泡,微泡由包裹气体核心的脂质外壳组成。微小的药物胶囊可以附着在外壳上,并附有抗体,帮助药物靶向癌细胞。微泡能够随红细胞而行,在人体免疫系统看来,它们就像细胞一样,因此不会引发免疫反应。注射后,使用超声波跟踪它们的进展,当它们到达癌细胞时,短暂而急剧的超声波水平增加使它们破裂并输送药物;这也会给癌细胞打孔,帮助药物粘附在癌细胞上。