脂质纳米颗粒的解剖结构 LNP 通常由四种关键成分组成:磷脂、可电离阳离子脂质、胆固醇和聚乙二醇连接 (PEG 化) 脂质(见方框)。与构成每个细胞膜的脂质一样,LNP 包裹并保护其货物。易降解的有效载荷(如 mRNA)受到保护,直到 LNP 能够将其内容物输送到细胞中。LNP 通常是球形的,平均直径在 10 到 1,000 纳米之间,包裹的材料可以包括核酸、蛋白质片段或其他生物有效载荷。人们付出了巨大努力来设计 LNP 组件以与核酸货物兼容。核酸带有多阴离子电荷,这使得它们排斥带负电荷的磷脂。可电离阳离子脂质的开发对于 mRNA-LNP 疫苗至关重要。这些脂质在酸性 pH 下带正电荷,在储存期间包围并包裹核酸。一旦 LNP 被注射并进入 pH 中性的血液,可电离脂质就会恢复中性,这有助于 LNP 逃避免疫检测。颗粒疏水性和正电荷都与免疫反应增强有关。6,7 LNP 通过内吞作用被吸收到细胞中,但它们被隔离在内体中,内体是注定要被破坏的细胞器。然后,可电离脂质在内体的酸性环境中恢复正电荷,最终破坏 LNP 结构并释放细胞内的核酸。8
背景:非转移性肌肉浸润性尿路上皮膀胱癌(MIBC)的预后较差,护理标准(SOC)包括基于新辅助顺铂的化学疗法(NAC)与膀胱切除术相结合。接受NAC的患者与单独的膀胱切除术相比,总体生存率的最多<10%。这个主要的临床问题强调了我们对抵抗机制的理解和对可靠的临床前模型的需求。鸡肉胚胎绒毛膜膜膜(CAM)代表了免疫功能低下的小鼠的快速,可扩展且具有成本效益的替代方法,用于在体内建立患者衍生的异种移植物(PDX)。cam- PDX利用易于获得的植入支架和富含血管的,免疫抑制的环境,用于植入PDX肿瘤和随后的功能研究。方法:我们使用CAM-PDX模型优化了原发性MIBC肿瘤的植入条件,并在基于顺铂的化学疗法反应之间进行了一致性,对患者的化学疗法反应与使用免疫组织化学标志物相结合的PDX肿瘤对PDX肿瘤进行了匹配。我们还使用肿瘤生长测量方法和对增殖标记物的免疫检测,KI-67测试了CAM-PDX上抗化疗的膀胱癌的精选激酶抑制剂反应。结果:我们的结果表明,在CAM上生长的原发性,耐NAC的MIBC肿瘤具有组织学特征 - 以及基于顺铂的基于顺铂的化学疗法耐药性,可在诊所观察到匹配的父母人类肿瘤标本。结论:我们的数据表明,基于顺铂的化学疗法抗性表型与原发性患者肿瘤和CAM-PDX模型之间的一致性。患者肿瘤标本成功地植入了CAM上,并显示出对双重EGFR和HER2抑制剂治疗的肿瘤生长大小和增殖的降低,但对CDK4/6或FGFR抑制没有明显的反应。此外,蛋白质组知情的激酶抑制剂在MIBC CAM-PDX模型上使用了新型治疗剂的快速体内测试的整合,从而为更复杂的细胞前小鼠PDX实验提供了更为有效的临床试验设计,旨在为具有有限治疗选择的患者提供最佳的精确药物。
寄生疾病在热带和亚热带国家造成重大伤害,导致死亡率,发病率和社会经济差异。感染的结果和疾病的严重程度通常取决于寄生虫生存策略与宿主免疫反应之间的相互作用。强大而有效的宿主免疫反应可以限制寄生虫的复制,降低疾病的严重程度并促进康复。相反,如果寄生虫可以逃避或抑制免疫反应,则感染可能会持续并导致慢性或严重疾病。有时,宿主免疫反应本身可以通过寄生虫感染引发的过度或失调的免疫反应会导致疾病病理,从而导致组织损伤,炎症和免疫介导的疾病。寄生虫和宿主免疫之间的这场战争是由协同进化动力学驱动的。寄生虫不断适应托管免疫反应,然后托管又制定了应对寄生虫逃避策略的新策略。这种共同进化过程可以导致具有增强的免疫逃避能力(从而促进耐药性)和宿主遗传变异的新寄生虫菌株的出现,从而赋予耐药性或对特定寄生虫的敏感性。因此,了解这场正在进行的战斗中涉及的复杂机制和动态对于开发更有效的方法来管理和打击寄生疾病至关重要。它涉及研究寄生虫采用的机制,以逃避免疫检测和开发可以增强宿主免疫反应的干预措施。Nguyen等人的研究论文。此外,探索宿主对寄生虫感染的遗传因素的遗传因素可以帮助识别较高风险的人并为有针对性的预防或治疗方法提供信息。该研究主题旨在为我们的理解 - 寄生虫相互作用做出贡献,从而导致寄生虫学领域的进步和人类健康的改善。它包括四个原始研究文章和一篇评论文章,重点介绍锥虫病,利什曼病,疟疾,贾第鞭毛病毒(原生动物感染)和血吸虫病(蠕虫感染)。重点是由细胞外原生动物寄生虫锥虫埃文西(Trypanosoma evansi)引起的感染,该寄生虫在牲畜和游戏动物中导致致命的慢性浪费疾病。这项研究已建立了一个实验疾病模型
癌症是由于免疫监视和耐受性失效而发生的。随着年龄的增长,细胞基因组的变化程度越来越大,这些基因改变的细胞虽然可以存活,但会被免疫监视杀死,这是一个关键的生物过程。该机制主要涉及 T 细胞对肿瘤相关抗原的识别,T 细胞在抗肿瘤免疫中起着关键作用。该过程的核心是 T 细胞免疫突触的形成,这是一种促进 T 细胞和抗原呈递细胞 (APC) 之间通讯的特殊结构。在识别 APC 上的主要组织相容性复合体 (MHC) 分子呈递的抗原后,T 细胞被激活,导致增殖和分化为 CD8+ 效应细胞,能够靶向和摧毁恶性细胞,并产生终身免疫记忆。 T 细胞免疫突触的特点是信号分子的动态组装,包括 T 细胞受体 (TCR)、共刺激受体(例如 CD28)和各种粘附分子,它们共同增强 T 细胞活化和效应功能,被称为免疫检查点。然而,癌细胞经常利用免疫检查点通路来逃避免疫检测。程序性细胞死亡蛋白 1 (PD-1) 和细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA-4) 是关键的抑制受体,当它们结合时,会抑制 T 细胞反应并调节自身免疫。PD-1 与其配体 PD-L1 结合后,会抑制 T 细胞活化并促进耗竭表型。同样,CTLA-4 与 CD28 竞争结合 APC 上的 CD80/CD86,导致 T 细胞共刺激减少。癌症通过多种不同的机制逃避免疫监视,包括过度表达 PD-L1。针对 PD-1/PD-L1 和 CTLA-4 的免疫检查点抑制剂通过重振针对肿瘤的 T 细胞反应,彻底改变了癌症治疗。通过阻断这些抑制途径,这些疗法增强了 T 细胞免疫突触的形成和稳定性,从而促进有效的免疫反应并改善各种恶性肿瘤患者的预后。免疫检查点抑制剂治疗的不良反应是由于自身免疫引起的,通常在治疗后数周或数月开始,最初需要使用类固醇进行免疫抑制治疗。在非小细胞肺癌 (NSCLC) 中,PD-1 和 PD-L1 抑制剂的效果大小与 PD-L1 肿瘤比例评分 (TPS:PD-L1 表达量) 成正比。
透明细胞肾细胞癌(CCRCC)代表肾癌最普遍的亚型,占所有肾癌病例的75%(1)。手术干预和化学疗法目前主导了这种恶性肿瘤的治疗局势。尽管与CCRCC相关的总体存活率相对较高,但在晚期阶段的发生的发生率将五年的生存率急剧降低至8%以下(2)。由于肾癌的复发率高和预后不良,因此抑制肾脏肿瘤细胞的远处转移至关重要。肿瘤发生和转移与肿瘤微环境的变化和肿瘤细胞的迁移能力密切相关(3)。Anoikis是一种编程的细胞死亡,是由细胞与细胞外基质(ECM)之间相互作用的丧失触发的(4)。在正常细胞中,这些相互作用受到在细胞表面和糖基化的ECM蛋白上启动Anoikis的分子的破坏,从而导致凋亡和细胞死亡。ECM将肿瘤细胞固定到组织内的固定位点。获得迁移能力并转移到血管部位的肿瘤细胞会产生对厌氧菌的抗性,从而使其通过血液转移到远处的位置,从而形成转移性灶(5-7)。最近的研究发现了调节对Anoikis耐药性的分子途径和机制,包括细胞粘附分子,生长因子和信号传导途径,这些途径诱导上皮到间质转变(8)。例如,K。Planells等人的研究。这些途径中的下游分子,例如pi3k/akt(9)和erk1/2(10),在凋亡耐药性和促进生存中扮演着重要角色。最新的研究表明,河马途径和胶原蛋白XIII与乳腺癌中的厌氧性抗性有关(11,12)。T细胞执行监测功能,识别和消除异常细胞,从而限制肿瘤细胞的存活。免疫细胞在培养肿瘤微环境和影响肿瘤进展中的作用已得到充分认识(13、14)。许多研究强调了免疫细胞凋亡对包括肺,乳腺癌和子宫内膜癌在内的各种恶性肿瘤发展和进展的影响。表明,沉默的Faim2可以通过调节T细胞来抑制存活和耐药性(15)。此外,L1CAM对子宫内膜癌预后的影响与其在促进Treg锻炼中的作用有关,从而损害了对凋亡的耐药性(16)。现有研究阐明了免疫细胞凋亡与各种癌症的预后之间的联系(17、18),但肿瘤细胞可以通过获得对厌氧菌的耐药性来逃避免疫检测(19)。尽管肾癌的临床治疗包括根治性的手术干预,化学疗法和免疫疗法,但仍缺乏公认且可靠的标准预测因子,用于诊断和预后。已经探索了免疫细胞与Anoikis之间的关系,以及Anoikis对CCRCC患者存活的影响。探索肾脏癌组织中免疫细胞和Anoikis的异常性能保持
持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。