trim71是在人类中大量表达的基因,在早期的胚胎发生和神经分化中起着至关重要的作用,通过与靶MRNA结合,触发翻译抑制或mRNA降解。3 Qiuying Liu等人,研究人员使用交联的免疫沉淀和测序(CLIP-SEQ)技术探索了小鼠中CH相关的突变。这项研究很重要,因为蛋白质对人类表现出相似的反应。4研究表明,突变的TRIM71蛋白与不同的靶标mRNA结合,表明“功能的获取”。具体而言,小鼠中的R595H-TRIM71与CTNNB1基因中的mRNA结合,该基因编码了β-catenin蛋白,这对于干细胞分化至关重要。5抑制其翻译可阻止神经发育必需蛋白质的产生。相反,R783H-TRIM71与LSD1 mRNA结合,抑制其翻译并导致干细胞分化的缺陷。5
缩写:3C,染色体构象捕获;4C,环状染色体构象捕获;ATAC-seq,使用测序检测转座酶可及染色质;Cas9,来自化脓性链球菌的内切酶;CHIP-seq,染色质免疫沉淀和 DNA 测序;CRISPR,成簇的规律间隔的短回文重复序列;CTCF,CCCTC 结合因子;EXT1,外骨化素糖基转移酶 1;GSIS,葡萄糖刺激的胰岛素分泌;GWAS,全基因组关联研究;MED30,RNA 聚合酶 II 转录亚基 30 的介质;pcHi-C,启动子捕获 Hi-C;R,调控区;RAD21,双链断裂修复蛋白 rad21 同源物;SLC30A8,溶质载体家族 30 成员 8;SNP,单核苷酸多态性; T2D,2 型糖尿病;TAD,拓扑关联结构域;UTP23,UTP23 小亚基加工体成分。
产品描述有效检测和量化DNA甲基化的能力(即5-甲基胞嘧啶)对于基于表观遗传学的研究至关重要。迄今为止,为此目的开发了几种方法,包括高性能毛细血管电泳,亚硫酸盐测序和甲基化的DNA免疫沉淀。5-MC DNA ELISA试剂盒是一种方便且功能强大的工具,可让研究人员在不到3小时的时间内准确定量5-MC。该试剂盒具有独特的抗5-甲基环胞嘧啶单克隆抗体,对5-MC既敏感又具有特异性。该测定法与脊椎动物,植物和微生物源以及PCR扩增子和碎片DNA的广泛输入DNA兼容。5-MC在DNA样品中可以从具有特殊设计的对照中生成的标准曲线中准确量化。 这个快速的简化工作流也是高通量分析的理想选择。5-MC在DNA样品中可以从具有特殊设计的对照中生成的标准曲线中准确量化。这个快速的简化工作流也是高通量分析的理想选择。
C9ORF72中内含子GGGGCC的重复膨胀是肌萎缩性侧面硬化症和额颞痴呆的常见遗传原因。重复序列均以意义和反义方向转录,以产生不同的二肽重复蛋白,其中poly(ga),poly(gr)和pr pr(pr)与神经变性有关。poly(pr)与RNA结合可能有助于毒性,但是尚未对转录组对poly(pr)-RNA结合的分析进行分析。因此,我们在人类细胞中进行了交联和免疫沉淀(夹)分析,以识别py(PR)的RNA结合位点。我们发现poly(PR)与近600个RNA结合,序列Gaaga富含结合位点。体外实验表明,聚(Gaaga)RNA与对照RNA高的(PR)结合pol(PR),并诱导聚(PR)的相分离为冷凝物。这些数据表明poly(PR)优先结合含Poly(Gaaga)的RNA,这可能具有生理后果。
转录因子 (TF) 介导的基因调控通常在致癌过程中被破坏。TF 结合位点的 DNA 甲基化状态可能决定相应基因的转录活性。研究表明,芪类多酚,如紫檀芪 (PTS),可通过重塑 DNA 甲基化和基因表达发挥抗癌作用。然而,这些影响背后的机制仍不清楚。本文探讨了 PTS 处理的 MCF10CA1a 侵袭性乳腺癌细胞中致癌 TF OCT1 结合与从头 DNA 甲基转移酶 DNMT3B 结合之间的动态关系。使用染色质免疫沉淀 (ChIP) 和下一代测序,我们确定了 47 个基因调控区,这些区域在 PTS 作用下 OCT1 结合减少,DNMT3B 结合丰富。大多数这些基因被发现具有致癌功能。我们选择了三个候选基因 PRKCA、TNNT2 和 DANT2,以进一步研究机制,同时考虑 PRKCA
摘要:特异性抗体对于蛋白质复合物的细胞和组织表达、生化和功能分析必不可少。然而,制备特异性抗体通常费时费力。将内源性蛋白质的表位标记在适当的位置可以克服这个问题。在这里,我们使用 AlphaFold2 蛋白质结构预测研究了表位标签位置,并结合 CRISPR-Cas9 基因组编辑和电穿孔 (i-GONAD) 开发了 Flag/DYKDDDDK 标签敲入 CaMKII α 和 CaMKII β 小鼠。使用 i-GONAD,可以将长达 200 bp 的小片段插入目标基因的基因组中,从而实现高效便捷的小表位标记。使用市售的抗 Flag 抗体进行实验,可以通过蛋白质印迹、免疫沉淀和免疫组织化学轻松检测内源性 CaMKII α 和 β 蛋白。我们的数据表明,通过 i-GONAD 生成 Flag/DYKDDDDK 标签敲入小鼠是一种有用且方便的选择,特别是在没有特定抗体的情况下。
摘要◥翻译后修饰对于调节转录因子p53至关重要,该转录因子p53以高度合作的方式结合DNA,以控制众多肿瘤抑制程序的表达。在这里,我们在DNA结合域中在高度保守的丝氨酸残基(人类S183/ S185,小鼠S180)的磷酸化中降低了DNA结合的合作性,从而显示了DNA结合的合作性。为探索这种抑制性磷酸化在体内的作用,生成了新的磷酸化 - 确定的p53-S180A敲入小鼠。染色质免疫沉淀测序和S180A敲入细胞的RNA测序研究表明DNA结合增强并增加了靶基因表达。在体内,这转化为骨髓的组织特异性脆弱性,导致造血干细胞的延伸,并损害DNA损伤后造血的适当再生。中位寿命显着从709天的野生型降低到仅568天
微小RNA(miRNA)和长链非编码RNA(lncRNA)是与肿瘤侵袭性和癌症转移相关的许多信号通路的组成部分。一些lncRNA被归类为竞争性内源性RNA(ceRNA),它们与特定的miRNA结合,以阻止与靶向mRNA的相互作用。研究表明,肝细胞生长因子/间充质上皮转化因子(HGF/c-Met)通路参与细胞生长、血管生成和胚胎发生等生理和病理过程。c-Met的过度表达可导致下游信号的持续激活,从而导致致癌、转移和对靶向治疗的耐药性。在本综述中,我们利用临床和组织染色质免疫沉淀 (ChIP) 分析数据评估了抗癌和致癌非编码 RNA (ncRNA) 对 c-Met 的影响,以及癌症中 lncRNA、miRNA 和 c-Met 之间的相互作用。我们总结了当前对 lncRNA/miR-34a/c-Met 轴在不同肿瘤类型中的机制和影响的认识,并评估了针对 c-Met 的 lncRNA 和/或 miRNA 对药物耐药性的潜在治疗价值。此外,我们讨论了 lncRNA 和 miRNA 在 c-Met 相关致癌作用中的作用以及潜在的治疗策略。
理由:败血症诱导的心肌病(SIC)是一种迅速发展的疾病,在没有有效的治疗干预的情况下预后不良。心肌细胞凋亡是导致SIC心脏功能障碍的关键因素。目前,对此机制的研究尚不清楚。方法:我们进行了LPS诱导的原代小鼠心肌模型和小鼠SIC建模。通过mRNA-Seq,我们发现SIC小鼠心脏组织中明显的凋亡。 进一步的共聚焦显微镜和免疫沉淀结果证实,PTX3是心肌细胞凋亡的重要参与者。 然后,我们使用芯片和双酸酶报告基因测定法确认SOX18对PTX3产生转录抑制作用。 M6A-SEQ和RNA稳定性测定确认,RBM15/YTHDF2介导/识别的M6A修饰是SIC中Sox18变化的关键因素。 结果:我们的实验表明,SIC中异常升高的PTX3在介导流体吞噬作用中起关键作用。 在生理条件下,PTX3转录被SOX18抑制。 然而,在败血性心肌病期间,SOX18稳定性受到RBM15/YTHDF2介导的M6A修饰的损害,从而导致PTX3水平升高,并随后诱导心肌细胞凋亡。 结论:总而言之,我们已经描述了SIC中的RBM15/YTHDF2-SOX18-PTX3轴。 它为SIC中心肌细胞凋亡的治疗提供了一种新方法,以改善预后。通过mRNA-Seq,我们发现SIC小鼠心脏组织中明显的凋亡。进一步的共聚焦显微镜和免疫沉淀结果证实,PTX3是心肌细胞凋亡的重要参与者。然后,我们使用芯片和双酸酶报告基因测定法确认SOX18对PTX3产生转录抑制作用。M6A-SEQ和RNA稳定性测定确认,RBM15/YTHDF2介导/识别的M6A修饰是SIC中Sox18变化的关键因素。结果:我们的实验表明,SIC中异常升高的PTX3在介导流体吞噬作用中起关键作用。在生理条件下,PTX3转录被SOX18抑制。然而,在败血性心肌病期间,SOX18稳定性受到RBM15/YTHDF2介导的M6A修饰的损害,从而导致PTX3水平升高,并随后诱导心肌细胞凋亡。结论:总而言之,我们已经描述了SIC中的RBM15/YTHDF2-SOX18-PTX3轴。它为SIC中心肌细胞凋亡的治疗提供了一种新方法,以改善预后。
口腔癌负责世界各地的许多死亡,因为它导致了由于治疗失败而导致的复发和转移。常规处理破坏了分化的肿瘤细胞,但肿瘤干细胞种群具有抗性并重新填充肿瘤。Wnt/β-catenin信号传导参与肿瘤干细胞的维持,生存,自我更新和分化及其信号传导,可以通过表观遗传修饰来调节。该项目的目的是确定控制Wnt/β-catenin信号通路及其靶标涉及的表观遗传变化,并研究道路参与肿瘤干细胞积累和口服癌细胞系的化学性。研究了三种野生口服癌菌株(Cal27 wt; SCC9 WT; SCC25 wt)和顺铂耐药性(Cal27 CISR; SCC9 CISR; SCC25 CISR)及其肿瘤干细胞群(CTT+)和非肿瘤干(CTT-temor(CTTT-))。QPCR分析,以评估基因表达和蛋白质印迹以进行蛋白质水平评估。通过细胞可行性测试确定IC50剂量的抑制剂。球体流量和鉴定的CTT+的形成细胞术。染色质免疫沉淀以识别道路的表观遗传调节。Xenoenxe检验用于研究Wnt/β-catenin途径作为治疗靶标的潜力。我们观察到表观遗传机调节基因的表达增加,例如BRD7,EZH2,KDM4C和MLL1和CTNNB1基因,该基因在抗顺铂菌株中编码β-catenin的ctNNB1基因。Wnt/β-catenin途径基因(如APC和GSK3β)在3种化学主义菌株中减少,下游FGF18和MMP7基因增加。CTT+的种群表现出参与组蛋白甲基化的基因的更大表达。β-catenin和甲基化的H3K27ME3和H3K9ME2组蛋白在顺铂抗性菌株和CTT+中也增加了。EZH2(UNC1999)和β-catenin抑制剂(ICG-001和FH535)的抑制剂降低了CTT+的群体,并降低了化学谱系中CTT+的群体,并降低了β-catenin和Ezh2蛋白。H3K27ME3用抑制剂处理后也降低了它。UNC1999治疗增加了上游APC和GSK3β基因的表达,并且对ICG-001,FH535和UNC1999的处理可有效降低CTT+中下游MMP7基因。FH535显示出降低CTT+种群的有效性,尤其是与顺铂和UNC1999结合使用时。β-catenin抑制剂单一疗法或与顺铂和UNC1999结合降低了CTT+躯干表型。在肿瘤组织中施用FH535,FH535+顺铂和UNC1999+FH535之后,肿瘤生长降低,肿瘤β-catenin,Ezh2,H3K27Me3和肿瘤干细胞标记肿瘤降低。通过化学谱系和CTT+CTT+种群中的染色质免疫沉淀,我们确定EZH2与该地区