免疫疗法是当今抗击癌症的一种关键且有利的治疗方法。尤其是免疫检查点抑制剂,已得到广泛应用,并在各种恶性肿瘤中取得了突破性的治疗效果。然而,其在卵巢癌中的疗效并不令人满意。大量无反应率这一迫切问题需要立即引起关注。寻求新靶点和制定协同联合治疗方法对于应对这一挑战至关重要。B7-H4 是 B7 家族共抑制分子的成员,在卵巢癌中表现出高表达水平,与肿瘤进展、耐药性和不良预后密切相关。B7-H4 有可能成为评估患者免疫反应的宝贵生物标志物。最近针对卵巢癌免疫治疗背景下的 B7-H4 的研究和临床前试验凸显了其作为一种有前途的免疫治疗靶点的出现。本综述旨在讨论这些发现并预测 B7-H4 在卵巢癌免疫治疗和靶向治疗中的未来前景。
免疫疗法已成为癌症治疗的新疗法,为传统疗法(例如化学疗法和放射线)带来了巨大变化。今天的作用非常重要,尤其是在传统治疗有效的癌症中。免疫控制抑制剂,例如pembrolizumab和nivolumab,通过防止抑制途径来彻底改变预后不良的癌症的背景,从而使免疫系统更有效地识别和攻击癌细胞。这些疗法证明,对于许多不同类型的癌症,包括恶性肿瘤,肺癌和肾细胞癌取得了重大成功,可显着改善许多患者的生存和生活质量。此外,培养细胞转移疗法(例如CAR T细胞疗法)已经显示出对某些恶性血液学肿瘤的前所未有的反应,继续扩大免疫治疗方案1.简而言之,当今免疫疗法在癌症中的作用正在转变,为进行性或转移性癌症患者带来了新的疗法和希望。当研究继续进行时,免疫疗法准备在癌症护理的未来中发挥越来越大的核心作用。摘要 div>
除了免疫检查点抑制剂的快速发展,自组装免疫治疗药物的研发也呈现井喷态势。根据免疫靶点,传统肿瘤免疫治疗药物分为五类,即免疫检查点抑制剂、直接免疫调节剂、过继细胞治疗、溶瘤病毒和癌症疫苗。此外,精准度和环境敏感性更高的自组装药物的出现为肿瘤免疫治疗提供了一种很有前景的创新途径。尽管肿瘤免疫治疗药物研发进展迅速,但所有候选药物都需要进行临床前安全性和有效性评估,而常规评估主要采用二维细胞系和动物模型,这种方法可能不适合免疫治疗药物。而患者来源的异种移植和类器官模型保留了肿瘤病理异质性和免疫性。
2020年,据统计,全球原发性肝癌新发病例为90.6万,占所有恶性肿瘤的第六位,新发死亡人数为83万,占所有恶性肿瘤的第三位(1-3)。肝细胞癌(HCC)占原发性肝癌的75%-85%(4)。HCC严重威胁人类健康,特别是亚洲发展中国家,与HCC相关的主要危险因素是病毒(慢性乙型和丙型肝炎)、代谢(糖尿病和非酒精性脂肪肝)、毒性(酒精和黄曲霉毒素)和免疫系统疾病(5)。由于HCC早期无症状且缺乏特异性的生物标志物,大多数HCC患者诊断时已是中晚期(6,7)。手术切除、肝移植以及一些局部区域治疗如肝动脉化疗栓塞、射频消融等常作为HCC的根治性治疗手段(8),但仅有30%~40%的HCC患者能够接受根治性治疗,其余60%~70%的患者只能接受非根治性治疗,如经动脉化疗栓塞、分子靶向药物治疗(9)。尽管HCC的根治性治疗在临床上已取得一定进展,但部分患者仍需进一步的肝动脉化疗栓塞治疗。
癌症免疫疗法在治疗各种恶性肿瘤方面取得了巨大的进步。成功免疫疗法的最大障碍是癌细胞的免疫抑制肿瘤微环境(TME)和低免疫原性。要成功进行免疫疗法,必须将“冷” TME转换为“热”免疫刺激状态,以激活残留的宿主免疫反应。为此,应损坏TME中的免疫抑制平衡,应诱导免疫原性癌细胞死亡以适当刺激杀死肿瘤的免疫细胞。光动力疗法(PDT)是诱导癌细胞免疫原性死亡(ICD)并破坏免疫限制性肿瘤组织的有效方法。PDT会触发链反应,该链反应将使TME“热”并具有ICD诱导的肿瘤抗原呈现给免疫细胞。原则上,PDT和免疫疗法的战略组合将协同作用,以增强许多棘手的肿瘤的治疗结果。采用纳米载体的新技术是开发出来的,以提供光敏剂和免疫治疗剂对TME有效。新一代纳米医学已开发用于PDT免疫疗法,这将加速临床应用。
病例介绍:我们描述了一名 69 岁的艾滋病患者,其最初表现为右锁骨上融合性肿大淋巴结和右腋窝下不明原因的轻微疼痛,并因剧烈咳嗽发作而加重。初始胸部 CT 扫描显示纵隔内有多发结节和肿块阴影,双肺有多发结节,以及少量心包积液。此外,肺癌血清生物标志物异常,如下:癌胚抗原 (CEA) 为 13.74 ng/mL,细胞角蛋白 19 片段 (CYFRA21-1) 为 6.82 ng/mL,神经元特异性烯醇化酶 (NSE) 为 25.49 ng/mL,前胃泌素释放肽前体 (ProGRP) 为 89.35 pg/mL。后续病理证实为SMARCA4缺陷型未分化肿瘤,考虑到患者免疫状态较弱,PD-L1水平中等,一线治疗以免疫治疗+抗血管生成药物联合治疗为主,未采用化学免疫治疗,患者对免疫治疗联合抗血管生成药物反应良好,总生存期超过22个月。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
尽管免疫治疗具有明显的优势,但仍存在不可避免的脱靶效应,导致严重的不良免疫反应。近年来,药物递送系统(DDS)的研究和开发日益受到重视。在几十年的发展中,DDS已显示出以精确靶向的方式递送药物以减轻副作用的能力,并具有灵活控制药物释放、改善药代动力学和药物分布的优势。因此,我们认为将癌症免疫治疗与DDS相结合可以增强抗肿瘤能力。在本文中,我们概述了癌症免疫治疗中最新的药物递送策略,并简要介绍了基于纳米载体(脂质体、聚合物纳米胶束、介孔二氧化硅、细胞外囊泡等)和偶联技术(ADC、PDC和靶向蛋白质降解)的DDS的特点。我们的目的是向读者展示不同免疫机制下的各种药物递送平台,并分析它们的优势和局限性,为癌症免疫治疗提供更优越、更准确的靶向策略。
CD24 是一种存在于细胞表面的蛋白质,在癌细胞的增殖、侵袭和扩散中起着至关重要的作用。它通过糖基磷脂酰肌醇 (GPI) 粘附在细胞膜上,与癌症患者的预后和存活率有关。CD24 与存在于自然杀伤细胞和巨噬细胞等免疫细胞上的抑制性受体 Siglec-10 相互作用,从而抑制自然杀伤细胞的细胞毒性和巨噬细胞介导的吞噬作用。这种相互作用有助于肿瘤细胞逃避免疫检测和攻击。尽管将 CD24 用作癌症免疫疗法的免疫检查点受体靶标仍处于早期阶段,但临床试验已显示出令人鼓舞的结果。靶向 CD24 的单克隆抗体已被发现具有良好的耐受性和安全性。其他临床前研究正在探索使用嵌合抗原受体 (CAR) T 细胞、抗体-药物偶联物和基因疗法来靶向 CD24 并增强对肿瘤的免疫反应。总之,本综述重点介绍了 CD24 在免疫系统中的作用,并为 CD24 作为癌症免疫治疗的有希望的免疫检查点提供了证据。
最重要的是在T细胞表面上的CD28共刺激分子和在抗原呈递细胞上的CD80分子的组合(10)。在T细胞激活的双重信号传导系统中,CD28激活的不存在导致过度激活诱导的细胞死亡(AICD)。然而,在CD80与CD28结合后,可以避免T细胞的AICD,从而导致T细胞的耐用抗肿瘤活性(11)。此外,CD80和CD28的组合还可以增强T细胞的细胞因子(例如IL-2)的分泌。此外,它可以增强CD4+ T细胞的增殖以及CD4+和CD8+ T细胞的细胞毒性活性(4)。最近的研究表明,共刺激分子CD28对T细胞的活性不足会导致T细胞的抗肿瘤活性降低(12)。然而,随着CD28激活信号的增加,T细胞的抗肿瘤活性得到了增强(13,14)。因此,通过CD80在T细胞表面的CD28分子激活可能会提高T细胞对实体瘤的杀伤效率,从而提供一种新的免疫疗法方法。