,KILA,KOZANI,KOZANI,50100,希腊B电气和计算机工程系,西马其顿大学,校园Zep Kozani,Kozani,Kozani,50100,Greece c Tecnalia,Basque研究与技术联盟(BRTA) Mikeletegi Pasealekua, 2, 20009 Donostia, SS, Derio, 48160, Spain d Industrial Systems Institute / Research Center “ATHENA”, Patras Science Park building Platani, Patras, 26504, Greece e Secure Systems Laboratory, Department of Digital Systems, University of Piraeus, 80 Karaoli & Dimitriou, Piraeus, 18534, Greece f Department of Computer科学,德国人,特拉斯大学,卡瓦拉校园,卡瓦拉,65404,希腊网络和数字媒体系,金斯敦大学,伦敦金斯敦大学,彭斯顿,泰晤士河,泰晤士河,萨里,伦敦,伦敦,KT1 2EE,英国,英国,KILA,KOZANI,KOZANI,50100,希腊B电气和计算机工程系,西马其顿大学,校园Zep Kozani,Kozani,Kozani,50100,Greece c Tecnalia,Basque研究与技术联盟(BRTA) Mikeletegi Pasealekua, 2, 20009 Donostia, SS, Derio, 48160, Spain d Industrial Systems Institute / Research Center “ATHENA”, Patras Science Park building Platani, Patras, 26504, Greece e Secure Systems Laboratory, Department of Digital Systems, University of Piraeus, 80 Karaoli & Dimitriou, Piraeus, 18534, Greece f Department of Computer科学,德国人,特拉斯大学,卡瓦拉校园,卡瓦拉,65404,希腊网络和数字媒体系,金斯敦大学,伦敦金斯敦大学,彭斯顿,泰晤士河,泰晤士河,萨里,伦敦,伦敦,KT1 2EE,英国,英国,KILA,KOZANI,KOZANI,50100,希腊B电气和计算机工程系,西马其顿大学,校园Zep Kozani,Kozani,Kozani,50100,Greece c Tecnalia,Basque研究与技术联盟(BRTA) Mikeletegi Pasealekua, 2, 20009 Donostia, SS, Derio, 48160, Spain d Industrial Systems Institute / Research Center “ATHENA”, Patras Science Park building Platani, Patras, 26504, Greece e Secure Systems Laboratory, Department of Digital Systems, University of Piraeus, 80 Karaoli & Dimitriou, Piraeus, 18534, Greece f Department of Computer科学,德国人,特拉斯大学,卡瓦拉校园,卡瓦拉,65404,希腊网络和数字媒体系,金斯敦大学,伦敦金斯敦大学,彭斯顿,泰晤士河,泰晤士河,萨里,伦敦,伦敦,KT1 2EE,英国,英国
急性HBV感染的临床过程与其他类型的急性病毒肝炎没有区别。孵化期范围为45至160天(平均120天)。临床体征和症状在成年人中的发生频率比通常有无症状急性病程的婴儿或儿童更频繁。但是,有急性感染的成年人中约有50%是无症状的。从初始症状到黄疸发作的前片前或前驱相通常持续3至1天。它是非特异性的,其特征是不适,厌食症,恶心,呕吐,右上象限腹痛,发烧,头痛,肌痛,皮疹,肢管炎和关节炎和黑暗的尿液,以及黑暗的尿液,从Jaundice开始前1到2天。黄体相是可变的,但通常持续从L到3周,其特征是黄疸,轻或灰色的凳子,肝柔韧性和肝肿大(脾肿大较少)。在康复期间,不适和疲劳可能会持续数周或数月,而黄疸,厌食症和其他症状消失。成年人中大多数急性HBV感染导致完全恢复,从血液中消除HBSAG和抗HBS的产生,从而对未来感染产生免疫力。
这些资源如有更改,恕不另行通知。TI 仅授权您使用这些资源来开发使用资源中描述的 TI 产品的应用程序。禁止以其他方式复制和展示这些资源。不授予任何其他 TI 知识产权或任何第三方知识产权的许可。TI 对因您使用这些资源而产生的任何索赔、损害、费用、损失和责任不承担任何责任,您将全额赔偿 TI 及其代表。
摘要。本文提出了一种通常适用于所有边缘到云应用的通用物联网框架,并对涉及汽车 V2X 架构的用例进行了评估研究,该架构在模拟智能车环境中的玩具智能车上进行了测试和验证。研究中的架构经过精细调整以模拟实际场景,因此玩具车上的传感器几乎涵盖了当今智能车中辅助常规 ADAS 的所有传感器。云连接通过 CoAP 协议维持,CoAP 协议是一种标准的物联网连接协议。最后,提出的安全解决方案是使用机器学习 (ML) 技术构建并部署在边缘的智能入侵检测系统 (IDS)。边缘 IDS 能够执行异常检测并将检测结果以及传感器收集的大数据报告给云端。在云端,服务器存储和维护收集的数据,以便进一步重新训练 ML 模型以进行边缘异常检测,该模型分为两类,即传感器异常检测模型和网络异常检测模型。为了演示无线软件更新 (SW-OTA),评估设置中的云实现了从云到连接边缘的 ML 模型升级功能。此实现和评估提供了选择 ML 作为 IDS 候选的概念验证,并且该框架通常适用于各种其他 IoT 场景,例如医疗保健、智能家居、智能城市、港口和工业环境等,并为未来的优化研究铺平了道路。
First Name Surname Organisation Adam Dallas-Chapman Government of Jersey Ainle NiBhriain National Parks and Wildlife Service Aisling Corkery AN FÓRAM UISCE |The Water Forum Alan Moore NPWS Alastair Christie Government of Jersey Allan McDevitt Atlantic Technological University Andy Bourke Department of Agriculture, Food and the Marine Ann Haigh National Biodiversity Data Centre Antony Knights University College Cork Aoife Budd Shared Island Core Team Dept of Taoiseach Arjan Gittenberger GiMaRIS Barry Fox Inland Fisheries Ireland Bruce Osborne University College Dublin Carol Marks Bord Bia Cathal Gallagher Inland Fisheries Ireland Catherine Morrison BIM Cathryn Hannon NPWS Cathy Maguire The Office for Environment Protection Christian Nea Transport Infrastructure Ireland Ciar O'Toole Mara Ciara Carberry NPWS Claire Cooper科学咨询与研究,NPWS Clare Heardman国家公园和野生动物服务局Colette O'Flynn国家生物多样性数据中心Conor McGee Dafm Constanze O'Toole河流NPWS David Tierney NPWS Dawn Dawn Dawn Diamond daera Eadaoin Boyle Tobin业务在爱尔兰爱尔兰Eamonn Horgan Waterways IrelandEmerníDhúill业务生物多样性爱尔兰爱尔兰爱尔兰Finon Eaton Eaton Eaton eaton Eaton eaton eaton eaton eaton eaton and Florentine spaans spaans afbi afbi afbi
物联网(IoT)是一个分散且不断变化的网络,它在安全方面构成了挑战。输入强调了对保护物联网设备及其数据免受潜在威胁的强大安全措施的需求。该研究侧重于联合学习(FL)技术,作为增强物联网安全性的潜在解决方案。fl模型旨在保护敏感数据,同时允许其与其他系统进行交换,从而成为保护物联网环境的有前途的方法。此外,该输入表明,实施入侵检测系统(IDS)是增强整体物联网安全性的附加策略。通过组合FL和ID,目的是开发一种全面的解决方案,以解决保护IoT设置的复杂问题。输入强调了探索机器学习(ML)技术的重要性,以改善物联网设备的安全协议。它还强调了验证FL技术在保护和传输物联网系统中的指定信息中的效果的重要性。ID的集成被提出是一项额外的措施,以增强整个物联网系统的安全性。最终,这项研究的目的是提供全面和有效的解决方案来应对物联网中的安全挑战,从而增加对这项技术在各个领域中应用的信任。
摘要 - 随着网络犯罪的发展越来越多,智能网络入侵检测系统(NIDS)的存在在网络基础架构中是必不可少的。此外,还有许多挑战面临基于人工智能的NID设计,例如网络流量中的无关功能,罕见的恶意流量示例以及机器学习模型选择和模型的Mypermeters finetuning的努力。这项研究提出了与这些挑战有关的有效NID,以准确检测恶意行为。首先,一种并行混合特征选择方法过滤了最重要的功能。第二,为了解决数据不平衡,我们集成了一项合并的随机下采样策略和合成少数民族过采样技术 - 编辑了最近的邻居技术,以确保对少数派攻击的平衡表示。最后,堆叠的集合分类器包括通过自动化机器学习方法选择的四种最佳基本模型。使用CICIDS2017数据集(用于入侵检测研究的综合基准),我们的方法达到了令人印象深刻的99.76%的令人印象深刻的检测率,从而有效地识别了多数族裔和少数类别。索引术语 - 开为单位,异常检测器,最佳特征选择,不平衡数据集,SMOTE,集合分类器。
植物病原体通过抑制植物免疫反应和与植物细胞相互作用而引起疾病。研究这些相互作用有助于解读病原体用来克服植物免疫力的分子策略。在植物病原体中,寄生于各种植物的线虫对全球粮食生产产生了深远的影响。为了对付这些寄生虫,植物已经发展出一套复杂的防御系统,包括刚性细胞壁和加固等防御措施,作为对抗任何入侵者的第一道防线。植物还具有多种组成性释放的植物化学物质,这些化学物质对入侵的微生物具有毒性,是它们的防御武器库。此外,根据宿主植物感知和识别入侵病原体的能力,宿主在感染后会触发大量的反应系统。线虫已经进化出通过神经系统感知和应对宿主防御的策略,这有助于它们逃避、避免或中和宿主植物的防御系统。为了制定有效的管理策略,了解线虫抑制宿主防御的机制至关重要。前文主要讨论了植物与线虫相互作用对线虫入侵的免疫作用,本文将讨论植物寄生线虫抑制植物防御的策略,全面阐述线虫的基本识别机制和宿主植物的基础免疫反应,并探讨线虫调控宿主防御的机制及其效应分子的作用,分析植物代谢产物的释放及其在分子水平上防御作用方式的最新研究进展。