这项研究研究了跨临界二氧化碳(CO 2)循环与常规地热双闪光循环的整合,以提高各种入口温度(225°C,250°C,275°C)的能量和充电效率。尽管地热双重闪光周期和CO 2跨临界周期都因其高效率和可持续性而被认可,但在不同的热条件下解决其合并性能的全面比较分析仍然很少。为了弥合这一研究差距,开发了一个详细的计算模型,以评估在各种操作场景下基础和集成系统的热力学行为。结果表明,集成系统在能源效率方面产生显着提高,基本周期为0.112、0.1265和0.1383,相比0.08436、0.1038和0.1197。exergy分析揭示了在较高温度下的潜在热效率挑战,因此需要进一步优化。该研究还探讨了分离器压力变化对系统性能的影响,这表明精确的压力管理可以大大增强功率输出。调查结果倡导更广泛地采用综合地热系统,强调了它们的潜力,以实质上提高可再生能源生产的效率,并提出了用于系统优化和环境影响评估的未来研究的途径。
旨在将温室气体排放到零净的旨在将温室气体排放减少到零的能源过渡运动一直在日本和海外加速(1)。为了实现这一目标,必须传播可再生能源的使用。但是,可再生能源有一个不利的,因为它容易受到各种不同因素,包括天气,这会导致负载变化。为了补偿这种弱点,对燃气轮机组合循环(GTCC)发电的期望有上升,该发电量能够快速启动和高热效率。为了提高GTCC发电的热效率,MHI集团已成为“ 1,700°C级超高温度的燃气轮机组件技术开发”国家项目的一部分。自2011年以来,该项目中开发的高级TBC已用于1600°C级的J系列燃气轮机,该公司已经运行了超过100万小时,并成功证明了高度的可靠性。此外,在2020年1月,三菱的力量开始调试下一代高效燃气轮机“ JAC(J-Series air冷却)”(2),该燃烧器通过使用强制性压缩率提高的强制性空气冷却系统来实现世界上最高的1650°C的涡轮机入口温度,并提高了高压速率的厚度(并提高)。这款涡轮机是基于J系列的,该系列具有可靠的技术和长期的现场操作。本报告将描述对JAC完成至关重要的先进TBC技术。