摘要: 我们考虑了具有固定入射方向的远场模式的裂纹散射逆问题。首先,我们证明了声软裂纹可以由具有固定入射方向的多频远场模式唯一地确定。该证明基于散射场的低频渐近分析。唯一性结果的一个重要特征是背景甚至可以是未知的非均匀介质。然后提出了一种改进的牛顿法来数值重建裂纹的形状和位置。与经典牛顿法相比,改进的牛顿法放松了对良好初始猜测的依赖,并且可以应用于多个裂纹。二维数值算例证明了改进的牛顿法的可行性和有效性。特别是,如果我们合理地使用两个频率或两个入射方向的测量值,重建的质量可以大大提高。 论文链接: http://dx.doi.org/10.1088/1361-6420/ad904d
我们报告了通过解离电子附着于气态甲酰胺而产生的阴离子的三维动量成像测量的实验结果。从动量图像中,我们分析了 NH7、O~ 和 H~ 碎片的角能和动能分布,并讨论了两种入射电子能量范围(从 5.3 eV 到 6.8 eV 以及从 f 0.0 eV 到 ff .5 eV)的多重共振的可能电子附着和解离机制。与实验结果相比,对于 ^6 eV 入射电子,NET 阴离子的角分布的从头算理论结果强烈表明,产生该碎片的两个共振之一是 2 A" Feshbach 共振。
背景:我们的MPM组装(在[1]中报告的详细信息)使用扫描,紧密焦点飞秒激光器(1,040和1,560 nm)来刺激样品中的非线性光学相互作用。这些相互作用发生在多个光子同时相互作用并激发电子,从而赋予其能量之和。当激发电子落回其基态时,单个光子被入射光子的能量之和发出[4]。在2光子相互作用中,发射的光子的能量是入射光子的第二阶谐波(即,频率/能量/能量或一半波长)。这发生在缺乏反转对称中心的晶体结构中的矿物质中。对于3光子相互作用,发射光子的能量相对于入射光子的三倍。这些相互作用会发生在激光焦点范围内的折射率变化时。在2-光子和3光子的相互作用中,如果将电子在激发态内刺激到更高的振动水平,则振动衰变损失了一定数量的能量,从而导致在较长波长下荧光发射。非线性
五棱镜的功能受反射定律支配,该定律指出,如果入射光束从两个平面反射,则反射光束会弯曲一个角度,该角度等于反射器之间锐角的余角的两倍。因此,在五棱镜中,光束偏差为 2 (180 - 45) 0 = 2700 可以很容易地证明,如果入射光束不垂直于其进入的表面,它将在进入和离开时以相同的角度折射,因此效果相互抵消(图2)。当然,这假设进入面和离开面正好相距 900。下一节将介绍情况不成立的情况。
五棱镜的功能受反射定律的支配,该定律指出,如果入射光束从两个平面反射,则反射光束会弯曲一个角度,该角度等于反射器之间锐角的余角的两倍。因此,在五棱镜中,光束偏差为 2 (180 - 45) 0 = 2700。很容易证明,如果入射光束不垂直于其进入的表面,它将在进入和离开时以相同的角度折射,因此效果相互抵消(图 2)。当然,这假设入射面和出射面正好相隔 900。下一节将介绍情况不成立的情况。
从性别的角度,入射年和入射率地区的角度来看,中国发生了当前发病率和死亡率的特征(Zheng等,2022)。尽管中国癌症的总体发病率和死亡率持续上升,但某些传统高发病率癌症的率显示出稳定的趋势,某些癌症的生存率逐渐增加(Zeng等,2018)。老龄化人群的存在使癌症控制仍然是我们的医疗保健系统的巨大挑战(Chen等,2022)。然而,在同一情况下,发达国家的癌症发病率和死亡率逐渐降低,这表明中国可以参考发达国家预防癌症预防和治疗的对策(Xia等,2022)。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。