摘要:目标:本文旨在验证一种可穿戴、不显眼的耳中心脑电图 (EEG) 设备(称为“EARtrodes”)的性能和物理设计,该设备使用早期和晚期听觉诱发反应。结果还将为该设备用作隐藏式脑机接口 (BCI) 提供概念验证。设计:该设备由定制耳机和符合人体工程学的耳后部件组成,内嵌电极由柔软而灵活的硅橡胶和碳纤维组合制成。通过对人耳道和耳周区域的形态和几何分析,获得了导电硅胶电极在耳道内的位置和耳后部件的最佳几何形状。还开发了一种完全导电的通用耳机,以评估通用、更实惠的解决方案的潜力。结果:早期延迟结果表明导电硅胶电极能够记录高质量的 EEG 信号,与传统镀金电极获得的信号相当。此外,延迟结果还表明 EARtrodes 能够可靠地从耳朵检测决策过程。结论:EEG 结果验证了 EARtrodes 作为耳内和耳内 EEG 记录系统的性能,该系统适用于听力学、神经科学、临床研究等领域的广泛应用,并且可作为非侵入式 BCI。
重型和轻型耳机配有入耳式或挂耳式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75P 还可与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。Covert Audio 套件有黑色或米色可供选择,并有 2 线或 3 线配置,包括耳机、麦克风和 PTT。
重型和轻型耳机配有入耳式或耳挂式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75Pe 还可以与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。隐蔽式音频套件有黑色和米色两种颜色,以及带耳机、麦克风和 PTT 的 2 线或 3 线配置。
重型和轻型耳机配有入耳式或耳挂式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75P 还可与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。Covert Audio 套件有黑色或米色可供选择,并有 2 线或 3 线配置,包括耳机、麦克风和 PTT。
最具挑战性的工作环境需要尽可能最好的通信系统。Talk Through Your Ears® 提供清晰的无线电传输,即使在噪音最大和条件最恶劣的情况下也是如此。这款轻巧、行业坚固的通信系统可实现全新的通信水平。经过特殊设计的耳机结合了入耳式麦克风和扬声器,可提供出色的听力保护和清晰的语音通信。将您的系统带到任何地方 - 它与任何双向无线电和任何 PPE 兼容,甚至呼吸器!通信的未来就在这里,Talk Through Your Ears® 正在引领潮流。
摘要 持续的压力会对人的身心健康产生负面影响。压力监测和管理是一个活跃的研究领域,目的是分析或减轻压力的影响。检测压力的一种有前途的方法是测量生物信号,例如脑电图 (EEG) 或心电图 (ECG)。在本研究中,我们介绍了一种可穿戴的入耳式和耳罩式设备,可同时测量 EEG 和 ECG 信号。该设备由干式和软式传感电极组成,它们共形集成在耳塞表面。我们进行了一项初步研究,让测试对象接触三种标准压力源(斯特鲁普、记忆搜索和心算),同时测量他们的 EEG 和 ECG 信号。初步结果表明使用卷积神经网络对各种压力条件进行分类的可行性。
摘要:与替代方法相比,由于较高的信息传输速率和最少的训练设置更容易设置,大脑计算机界面(BCI)的稳态视觉诱发电位(SSVEP)方法很受欢迎。具有精确生成的视觉刺激频率,可以将大脑信号转换为外部动作或信号。传统上,使用或不带有凝胶的电极从枕骨区域收集SSVEP数据,通常安装在头顶上。在这项实验研究中,我们开发了一个入耳式电极来收集四个不同频率的SSVEP数据,并将其与枕头皮电极数据进行比较。来自五个参与者的数据证明了基于耳电极的SSVEP的可行性,显着增强了可穿戴BCI应用的可实用性。
可戴式计算领域的这些最新进展正在彻底改变我们与技术互动的方式,并扩大智能系统无缝集成到我们日常生活中的潜力。苹果于 2016 年推出了首款获得商业成功的 TWS 耳机 [ 2 ],并被誉为 TWS 市场的开创者。现在,支持 ANC 的耳机的份额正在飙升 [ 3 ]。ANC 耳机为可戴式计算带来了新的亮点。ANC 耳机在耳罩内放置一个反馈麦克风,以感应用户听到的环境噪音。由于这个麦克风听到的噪音与人听到的噪音相似,因此 ANC 电路可以在将结果信号发送到耳机扬声器之前产生抗噪效果。为了改善降噪效果,ANC 耳机进一步利用耳罩外部的前馈麦克风与反馈麦克风协同工作以扩展 ANC 带宽。反馈和前馈麦克风为许多传感应用开辟了新的机遇。例如,当耳机与人耳紧密密封时,就会产生耦合效应 [10],大大放大耳道中的低频声音。因此,许多可听设备的健康功能可以通过用反馈麦克风被动记录通过耳道传播的身体引起的振动来实现。这一想法在学术界得到了广泛的利用,引发了许多令人兴奋的移动应用,包括心率感应、耳部疾病诊断、呼吸感应、身体活动识别等 [11, 12, 15, 18]。除了上述感知耳戴设备的好处之外,耦合效应是入耳式耳塞可以为音乐播放产生足够的低音响应的根本原因。然而,这种耦合效应是可听设备的致命弱点,它放大了本来就过多的低频声音,例如由于身体运动和风引起的声音,使自己的讲话听起来不自然。当 ANC 电路拾取环境中放大的低频噪声时,这种低频噪声会使麦克风饱和,显著降低目标信号的动态范围,产生可听见的伪影,并使 ANC 电路变得不稳定。不幸的是,低频噪声会损害 ANC 性能,影响音频质量,甚至使 ANC 耳塞产生高音调的啸叫噪声。在本文中,我们将描述 ANC 耳机中常用的解决此问题的解决方案如何影响使用 ANC 麦克风子系统的可听式传感系统。需要指出的是,行业中用于调解这些影响以优化 ANC 性能、透明模式性能和语音拾取的解决方案可能会对社区提出的许多算法产生负面影响。过去,这些算法从未向可听式计算社区透露过。此外,经常被耳塞社区忽视,