本文研究了使用大型语言模型(LLM)从全长材料科学研究论文中提取聚合物纳米复合材料(PNC)的样本清单。挑战在于PNC样品的复杂性质,这些属性具有散布在整个文本中的许多属性。关于PNCS的注释详细信息的复杂性限制了数据的可用性,从而使文档级别级别的关系提取技术不切实际,这是由于综合命名实体的挑战跨度跨度。为了解决这个问题,我们为此任务介绍了一种新的基准和评估技术,并以零拍的方式探索了不同的提示策略。我们还结合了提高性能的自我一致性。我们的发现表明,即使是先进的LLMS陷入困境,也可以从文章中提取所有样本。最后,我们分析了此过程中遇到的错误,将它们归类为三个主要挑战,并讨论了未来研究的潜在策略以克服它们。
随机性的功能理论是在Vovk [2020]中以非算力的随机性理论的名义提出的。Ran-Domness的算法理论是由Kolmogorov于1960年代启动的[Kolmogorov,1968年],并已在许多论文和书籍中开发(例如,参见Shen等人。2017)。它一直是直觉的强大来源,但其弱点是对特定通用部分可计算函数的选择的依赖性,这导致其数学结果中存在未指定的加性(有时是乘法)常数。Kolmogorov [1965,Sect。 3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value). 与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。 它将在教派中引入。 2。 在本文中,我们将这种方法称为随机性的功能理论。 虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。 读者将不会假设对随机性算法理论的形式知识。 在本文中,我们有兴趣将随机性的功能理论应用于预测。 3。Kolmogorov [1965,Sect。3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value).与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。它将在教派中引入。2。在本文中,我们将这种方法称为随机性的功能理论。虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。读者将不会假设对随机性算法理论的形式知识。在本文中,我们有兴趣将随机性的功能理论应用于预测。3。机器学习中最标准的假设是随机性:我们假设观察值是以IID方式生成的(独立且分布相同)。先验弱的假设是交换性的假设,尽管对于无限的数据序列而言,随机性和交换性证明与著名的de Finetti代表定理本质上是等效的。对于有限序列,差异是重要的,这将是我们教派的主题。我们开始讨论在教派中预测的随机性功能理论的应用。2。在其中介绍了置信度预言的概念(稍微修改和推广Vovk等人的术语。2022,Sect。2.1.6)。然后,我们根据三个二分法确定八种置信预测因素:
*1 通过对商用制冷和空调设备进行持续监测的氟碳泄漏检测系统指南 *2 截至 2021 年 12 月。适用于风冷热泵型热源设备(风冷冷水机组)。东芝开利株式会社的研究 [参考] 东芝开利株式会社新闻稿 https://www.toshiba-carrier.co.jp/news/press/220126/ [参考] 东芝 SPINEX 市场 https://www.spinex-marketplace.toshiba/ja/services/tccr-net
2023 年 3 月 7 日 作者:参谋军士Braden Anderson 第 374 空运联队公共事务 在全国阅读推广日之际,第 374 空运联队的指挥官和其他管理人员最近为横田空军基地的儿童保育设施 Yume 儿童发展中心揭幕。孩子们。 这个周年纪念日是由国家教育协会于1998年设立的,是一个向孩子们传达阅读乐趣的日子。之所以选择3月2日,是因为这是图画书作者苏斯博士的生日。 横田图书馆一直参与国防部福利服务管理局的暑期阅读计划,该计划旨在鼓励年轻人在暑假期间养成阅读的习惯。允许日本员工使用图书馆。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
1 海军旅馆 2 海军门户旅馆及套房 3 兽医治疗设施 PAWS ‘N’ CLAWS KENNEL 4 临时人员支队 (TPD) 5 住房服务中心(3 楼) 个人支持支队 (PSD) 6 单身汉住房办公室 7 个人财产办公室 8 校车运输区域法律服务办公室 HRO 9 邮局车队及家庭支持中心 (FFSC) 家庭成员援助团队 (FMAT) 10 分支健康诊所 TRICARE(3 楼) 11 社区教育中心银行安全办公室(驾驶执照)宗教各部委 海军学院办公室 图书馆 12 CFAS 安全车辆登记办公室 13 基地通信办公室 (BCO) 14 AMERICABLE 15 住房仓库 16 小卖部 17 BAYSIDE 美食广场 18 CHILI'S(1 楼) BRODIE'S(2 楼) GALAXIES 夜总会(3 楼) 19 HAR- BOR VIEW 俱乐部 20 SHOGUN CAFÉ(厨房) 21 FLEET FITNESS 综合体 22 NEX LAUNDRY MAT 理发店/美容院 23 NEX AUTOPORT(迷你超市) 24 THRIFTY TREASURES NEX DEPOT 25 汽车和木制爱好商店 26 NEX 花园商店27 NEX PACK ‘N' WRAP 干洗店 ACE 汽车保险 28 NEX 制服店 NEX 家居用品店 29 USO 信息 票务和旅行 30 SHOWBOAT 剧院 31 MWR 户外娱乐 32 户外泳池 33 保龄球馆 MWR 行政办公室