英国皇家航空学会 走在变革的最前线 英国皇家航空学会成立于 1866 年,旨在推动航空科学的发展,自成立以来一直走在航空航天发展的最前线。如今,学会主要履行三个职责: • 支持和维护所有航空航天学科的最高专业标准; • 提供独特的专业信息来源和交流思想的中心论坛; • 在公众和工业领域发挥对航空航天事业的影响力。优势 • 为专业人士和爱好者提供会员等级 • 超过 17,000 名会员,遍布 100 多个国家 • 175 个企业合作伙伴 • 遍布全球的 100 多个分支机构 • 专门的职业中心 • 出版三本月刊 • 综合讲座和会议计划 • 世界上最全面的航空航天图书馆之一——法恩伯勒的国家航空航天图书馆。该协会是所有航空航天专业人士的家园,无论他们是工程师、医生、机组人员、空中交通管制员、律师,仅举几例。每个人都有会员等级 - 从爱好者到行业领袖。要加入该协会,请联系英国皇家航空学会会员部,地址:英国伦敦 W1J 78Q,汉密尔顿广场 4 号。电话:+44 (0)20 7670 4300;传真:+44 (0)20 7670 4309。电子邮件:raes@aerosociety.com 和网站:
面对迅速升级的气候危机,电力行业正在向可再生能源迈进。迄今为止,政策和战略都侧重于增加可再生能源的总体发电量,而很少考虑时间和地点。结果导致可再生能源市场的供需错位。可再生能源项目在最便宜的时间和地点生产能源,而其他时间和地点的供应则稀缺。与此同时,消费者继续在需要的时间和地点使用电力。这种不匹配增加了电网对化石燃料发电的依赖,以满足可再生能源仍然稀缺的时间和地点的电力需求。为了让电力消费者摆脱对碳排放能源的依赖,可再生能源市场必须在人们和企业需要电力的时间和地点激励发电。采用 24/7 清洁能源这一新兴概念的政策和战略可以通过按小时协调发电和使用来解决现有的不匹配问题,从而使可再生能源满足美国经济的全部电力需求。本文解释了现有的可再生能源政策和战略如何创造了
适用于现有或新的商业和工业客户,这些客户正在增加二十五 (25) 兆瓦 (MW) 或更大的新增电力负荷,或目前正在使用 Georgia Power 的电力服务,并且每年的最低峰值需求为二十五 (25) MW。Georgia Power 必须评估和验证新电力负荷的预测,以确认二十五 (25) MW 的最低门槛。如果客户拥有多个由 Georgia Power 提供服务的场所,则可以汇总每个场所的需求以满足此要求,前提是 (i) 场所的峰值需求总和大于或等于二十五 (25) MW,并且 (ii) 场所属于共同所有或共同控制。场所可能拥有不同标准电压的服务点。
随着全球向可持续能源未来的努力不断加速,越来越多的市场参与者专注于全天候确保无碳能源。在立法和内部授权以及技术进步的推动下,数据中心和氢气生产商等工业参与者处于这一转变的最前沿。同样,许多电力公司正在评估如何将每小时清洁发电目标纳入其资源规划的一部分。在本文中,我们深入探讨了过渡到 24/7 无碳能源 (24/7 CFE) 电网所固有的复杂性和机遇。我们提出了一个新的指标——绿色小时损失 (LoGH)——以帮助决策者在实现脱碳目标和投资无碳资源组合之间实现最佳平衡。我们证明,具有积极 LoGH 目标的实体将不得不大幅增加其资源组合或寻求下一代无碳技术来实现其目标。
SECI 沿着以需求为中心的可再生能源发展道路前进,于 2019 年 10 月发布了首个 400 兆瓦 RE RTC 招标(RTC-1)。随后,在 2020 年 3 月,SECI 宣布了 5,000 兆瓦 RE+热能(RTC-2)招标(2020 年 12 月容量降至 2,500 兆瓦)。2020 年 5 月,SECI RE 400 兆瓦(RTC-1)拍卖将 PPA 第一年的 L1 电价定为 2.9 卢比/千瓦时(前 15 年每年上涨 3%)。此后,为了为可再生能源与任何传统能源或储能相结合的部署铺平道路,MNRE 发布了基于电价的 RTC 电力项目竞争性招标流程指南。这些涵盖能源结构、关税结构、PPA(包括支付安全)等方面。对于 2021 年 10 月进行的 RTC-2 拍卖,L1 关税为 3.01 卢比/千瓦时。
第二次世界大战后,人们重新燃起对确保飞机能够在能见度极低的天气条件下安全着陆这一长期目标的兴趣,这促使英国、法国和美国开展了自动着陆系统的研究和开发计划。在回顾了着陆辅助设备的早期发展历史之后,本文介绍了 1945 年至 20 世纪 60 年代初英国皇家飞机研究院盲着陆实验组在导航系统、自动驾驶仪耦合器和操作技术方面所做的工作。其中进行的分析和实验工作促成了 Avro Vulcan 轰炸机单通道自动着陆系统的设计,本文也详细介绍了这些工作。同样,本文还介绍了英国飞机和航空电子设备制造商、民航局和航空登记委员会对霍克西德利三叉戟、维克斯 VC10 和其他民用运输飞机上采用的多通道系统的后续开发和适航认证所做的贡献。本文最后总结了波音 737、747、767 和协和式飞机的自动着陆能力。 1. 简介和早期历史 民航客机在各种天气条件下的自动着陆已成为民航的常规组成部分,并有助于提高航空运输的安全性和可靠性。英国在这一发展中发挥了重要作用,皇家航空研究院的盲着陆实验单元就是其中之一
参考文献[1] D. H. Staelin,A。H。Barrett,J。W。Waters,F。T。Barath,E。J。Johnston,P。W。Rosenkranz,N。E。Gaut,N。E。Gaut和W. B. Lenoir,“ Nimbus 5 Satellite:Microwave光谱仪5卫星:气象学和地球体物理学数据,Science,Science,Science,”。182,pp。1339–1341,1973。[2] W. L. Smith,“观察大气温度结构的卫星技术”,《美国气象学会公报》,第1卷。53,否。11,pp。1074–1082,1972年11月。[3] W. L. Smith,“卫星的大气响声 - 期望或改善天气预测的关键?”皇家气象学会季刊,第1卷。117,否。498,pp。267–297,1991年1月。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。 Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,卷。41,否。2,pp。253–264,2003年2月。[5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。1-5,2001年10月。[6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。”化学。Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Phys。,第1卷。9,pp。5563–5574,2009。Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,第1卷。43,否。11,pp。2535–2546,2005年11月。11。[7] W. J. Blackwell,“一种从高光谱分辨率探测数据中检索大气温度和水分突出的神经网络技术”,IEEE Trans。[8] W. J. Blackwell,“从高分辨率红外和微波炉发声数据中的大气温度和水分发明的神经网络检索”,《遥感的信号和图像处理》,C。C。C. Chen,编辑。Boca Raton,佛罗里达:Taylor和Francis,2006年,Ch。[9] W. J. Blackwell和F. W. Chen,大气遥感中的神经网络。马萨诸塞州波士顿:Artech House,2009年。[10] W. J. Blackwell,M。Pieper和L. G. Jairam,“在存在云的存在下使用Airs/Iasi/AMSU对大气发明的神经网络估算”,Spie Asia+C遥感研讨会,2008年11月,[11] B. Lambrigtsen,S。Brown,T。Gaier,P。Kangaslahti和A. Tanner,“际调查路径任务的基线”,IEEE IGARSS会议记录,第1卷。3,2008年7月,pp。338–341。[12] W. J. Blackwell等人,“高光谱微波大气发声”,IEEE Trans。Geosci。 遥感 ,审查,2009年。Geosci。遥感,审查,2009年。
使用微波和红外波长对地球的Atmo球形状态进行了远程测量[1,2]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。 红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。 于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。 这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。涉及这些光谱区域的物理考虑包括在微波波长度上具有相对较高的云渗透能力以及红外波长处的相对急剧的加权函数,尤其是在4 µM附近的短波区域中,普兰克非线性非线性会进一步提高温度敏感性。红外光谱仪技术在过去15年左右的时间内已明显发展,从而导致了沿狭窄的大气吸收特征间隔的数千个频段的同时光谱采样[3]。于2002年5月推出的大气红外发声器(AIRS)的尺寸为3.7至15.4 µm,并于2006年推出的红外大气发声干涉仪(IASI),尺寸为8461个通道,3.6至15.5 µm [4,5]。这些传感器以及类似的传感器作为国家极性操作的环境卫星系统(NPOESS)和气象卫星(Meteo SAT)第三代系统的一部分,从而通过使用高度光谱测量,从而实质上改善了大气的声音,从而在整个大气中产生更大的垂直分辨率[6]。
从 ESO 的角度来看,要实现最佳结果需要考虑许多因素。我们将与 ESO 合作确定关键目标(例如,使用 CFE 工具协调供需、处理二氧化碳排放、管理传输限制等),并考虑 ESO 对 24/7 市场发展的响应,包括对安排的具体方面的支持。
冬季道路的通行时间大约为 1 月中旬至 4 月中旬,具体时间取决于天气状况。冬季道路在交通方面非常可靠,但对于重型车辆的使用有很多限制。由于水流湍急且冰况不佳,穿越海斯河、戈德斯河和其他地区小溪时会遇到困难。运输卡车通常被限制在半载以方便穿越。由于冰况不佳,这些穿越也会导致冬季道路提前关闭。除了穿越之外,沿路的地形还会导致车辆需要爬陡峭的山坡,尤其是在海斯河渡口和“Bucky”山。在恶劣的驾驶条件下,重型卡车很难通过这些山坡。据报道,冬季道路在某些地区也较窄,从而限制了双向交通。一般情况下,从 Shamattawa 到 Gillam 大约需要 5 个半小时。从 Shamattawa 到 Thompson 大约需要 11 个小时。