本文研究了使用大型语言模型(LLM)从全长材料科学研究论文中提取聚合物纳米复合材料(PNC)的样本清单。挑战在于PNC样品的复杂性质,这些属性具有散布在整个文本中的许多属性。关于PNCS的注释详细信息的复杂性限制了数据的可用性,从而使文档级别级别的关系提取技术不切实际,这是由于综合命名实体的挑战跨度跨度。为了解决这个问题,我们为此任务介绍了一种新的基准和评估技术,并以零拍的方式探索了不同的提示策略。我们还结合了提高性能的自我一致性。我们的发现表明,即使是先进的LLMS陷入困境,也可以从文章中提取所有样本。最后,我们分析了此过程中遇到的错误,将它们归类为三个主要挑战,并讨论了未来研究的潜在策略以克服它们。
在正在进行的蒙基蛋白爆发中,迫切需要快速开发有效的治疗干预措施,能够抵消Monkeypox病毒(MPXV)采用的免疫逃避机制。逃避策略涉及F3L蛋白与DSRNA的结合,从而导致干扰素(IFN)产生减少。因此,我们当前的研究重点是利用虚拟药物筛选技术来靶向F3L蛋白的RNA结合结构域。在南非天然化合物数据库内的954种化合物中,只有四个显示出显着的对接得分: - 6.55, - 6.47, - 6.37和 - 6.35 kcal/mol。解离常数(KD)分析表明,MPXV中F3L的最高点命中1-4(-5.34, - 5.32, - 5.29和-5.36 kcal/mol)的结合效果更强。对顶部命中1至4的全原子模拟始终显示出稳定的动力学,这表明它们与界面残基有效相互作用的潜力。通过分析参数,例如回旋半径(RG),均方根波动和氢键,进一步证实了这一点。对结合自由能的累积评估在所有化合物中确认了表现最佳的候选物,其值分别为-35.90, - 52.74,-28.17和-32.11 kcal/ mol,用于最高点1-4。这些结果表明,最高点1-4的化合物可以对推进创新的药物疗法有很大的希望,这表明它们适合体内和体外实验。
此手册中提供的数据是指典型的数字。此信息不打算用作购买规范,也不意味着在任何特定应用中使用。未能选择适当的产品可能会导致产品损害或人身伤害。请与Amorim Cork Composites有关特定应用的建议。Amorim Cork Composites明确否认所有保证,包括对适销性或适合任何特定目的的任何隐含保证。由于使用此手册中列出的任何信息,其任何物质规范表,其产品或任何人或实体对其再使用的任何材料规范表,其任何材料规格表,其任何物质规范表,其任何物质规范表,其任何物质规格表,其任何材料规格表,其任何人的使用或重复使用。出于合同目的,请索取我们的产品规格表(PDA)。
•100%自然。•非转基因。•CGMP符合CGMP。•美国的GRAS身份。•欧洲的新食物。•无麸质。•行业中最低的重金属概况之一。•无过敏原。•无机溶剂。•用纯冰岛天然水栽培。•设施100%由可再生地热能提供动力。•经碳中性认证。
2023 年 3 月 7 日 作者:参谋军士Braden Anderson 第 374 空运联队公共事务 在全国阅读推广日之际,第 374 空运联队的指挥官和其他管理人员最近为横田空军基地的儿童保育设施 Yume 儿童发展中心揭幕。孩子们。 这个周年纪念日是由国家教育协会于1998年设立的,是一个向孩子们传达阅读乐趣的日子。之所以选择3月2日,是因为这是图画书作者苏斯博士的生日。 横田图书馆一直参与国防部福利服务管理局的暑期阅读计划,该计划旨在鼓励年轻人在暑假期间养成阅读的习惯。允许日本员工使用图书馆。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
非致病细菌可以通过动员和供应养分,保护病原体并减轻非生物胁迫来实质性地促进植物健康。但是,全基因组关联研究的数量报告了对受益微生物群体各个成员的遗传结构的遗传结构。在这项研究中,我们在条件下建立了一项全基因组的关联研究,以估计162个拟南芥的162次植物变异水平和潜在的遗传结构,该拟南芥的加入来自法国西南部的54个自然种群,响应于法国西南部,响应于13种二种菌株的二种菌株,这些菌株与较丰富的非植物构图相同,构成了叶子的隔离,并构成了叶子的隔离,并构成了叶子的分离。 地区。使用高通量表型方法来评分与营养生长相关的特征,在这些物种和菌株
在过去的几十年中,抗生素耐药基因的传播对人类健康构成了重大威胁。尽管植物层代表了至关重要的微生物库,但对人类干扰较少的自然栖息地中ARG的概况和驱动因素知之甚少。为了最大程度地减少环境因素的影响,我们在这里收集了从初级植被继承序列的早期,中和晚期阶段收集的叶片样品,以研究植物层在自然栖息地中如何发展。拟层gr。细菌 - 养分和叶片营养素含量,以评估其对植物圈args的贡献。总共确定了151个独特的ARG,涵盖了几乎所有公认的主要抗生素类别。我们进一步发现,由于植物圈的波动栖息地和植物个体的特定选择效应,在植物群落继承过程中存在一些随机和核心集。由于植物群落继承过程中植物层细菌的多样性,综合性的复杂性和叶片养分含量的减少,Arg的丰度大大减少。虽然土壤和落叶之间的紧密联系导致叶子中的arg丰度比新鲜的叶子更高。总而言之,我们的研究表明,植物圈在自然环境中拥有广泛的ARG。这些植物层args由各种环境因素驱动,包括植物群落组成,宿主叶特性和植物圈微生物组。
作者:M El-Zahabi · 2021 · 被引用 1 次 — 关键词:免疫调节、免疫抑制剂、免疫刺激剂、沙利度胺、。免疫佐剂、免疫、免疫系统、移植。第 2 页。42.Az.J.
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。