Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;
目的基因 sgRNA 数目: 64853 ;阴性对照 sgRNA 数目: 2000 ; sgRNA 大小: 20bp
iMeta 期刊 ( 影响因子 23.8 ) 由宏科学、千名华人科学家和威立出版,主编刘双江和傅静远教授。目标为生物 医学国际综合顶刊群 ( 对标 Nature/Cell) ,任何领域高影响力的研究、方法和综述均欢迎投稿,重点关注生物 技术、生信和微生物组等前沿交叉学科,已被 SCIE 、 PubMed 等收录,位列全球 SCI 期刊前千分之五,微生 物学研究类期刊全球第一;外审平均 21 天,投稿至发表中位数 57 天。 子刊 iMetaOmics ( 主编赵方庆和于君教授 ) 、 iMetaMed 定位 IF>10 的综合、医学期刊,欢迎投稿!
bitBiome Inc. 电子邮件:service@bitbiome.co.jp 网站:https://www.bitbiome.co.jp/ 日本东京新宿区早稻田鹤卷町 513 号 162-0041 早稻田大学第 121 栋 415 室
内在语言是一种内化的语言,人们用这种语言思考纯粹的意义。从大脑活动数据中解码内在语言不仅可以促进残障患者的交流,还可以帮助健康人整理思路,提高对元认知的理解。在之前的研究中,一种名为 EEGNet 的 EEG 数据深度学习模型被用于内在语言解码。然而,它在 4 类分类任务中只达到了 30% 的准确率。数据稀缺和内在语言解码固有的难度可能是原因,但这项研究假设以前的研究中特征提取不足。为了提高解码内在语言的准确性,使用迁移学习被认为是更有效的;在这种学习中,模型事先在不同的数据集上进行训练,然后针对目标数据进行微调。然而,迁移学习尚未应用于内在语言,甚至尚未应用于 EEG 数据。迁移学习对不同任务的脑电图数据或非脑电图数据的有效性尚未得到充分验证。本研究通过使用不同任务的脑电图数据和非脑电图数据对公开的内部语音数据集进行迁移学习,验证了特征提取的改进。结果证实,使用来自不同受试者的数据的迁移学习可以提高内部语音的准确性,但使用来自不同任务的脑电图数据的迁移学习则不会。另一方面,对于图像数据集,通过冻结某些层可以确认准确性的提高,即使数据的性质与脑电图数据不同。
1 )美国国家科学、工程和医学院医学研究所。人非圣贤,孰能无过。华盛顿哥伦比亚特区:美国国家科学院出版社;2001。 2 )美国国家科学、工程和医学院医学研究所。改善医疗保健诊断。华盛顿哥伦比亚特区:美国国家科学院出版社;2016。 3 ) Rajkomar A,Dean J,Kohane I。医学中的机器学习。N Engl J Med 2019;380:1347―58。 4 ) Crombie DL。诊断过程。J Coll Gen Pract 1963;6:579―89。 5 ) Sandler G。临床医学中病史的重要性以及不必要检查的成本。Am Heart J 1980; 100: 928 ― 31。6)Heneghan C,Glasziou P,Thompson M,Rose P,Balla J,Lasserson D 等. 初级保健中使用的诊断策略. BMJ 2009; 338: b946。7)Shimizu T,Tokuda Y. 枢轴和集群策略:预防诊断错误的措施. Int J Gen Med 2012; 5: 917 ― 21。
指国防部互助会职员及国防部互助会职员。 ) A.曾担任自卫队成员者(以下称为“前成员”) ※2024年8月12日前退役者(包括该日前预定退役者) B.防卫省相关团体(老兵协会、家属协会、遗族协会等)成员 C.A、B两方的家属(初中生以上) (2)参赛作品每人每类别限3件,且须为未发表的原创作品。 然而,发布到个人 SNS(社交网络服务)或博客