光子是光的基本量子,被广泛认为是能量的载体和电磁相互作用的介质。本文提出,光子还编码了全息平面内量子相互作用的“地址”,为跨时空协调量子现象提供了一种机制。基于《从许多不真实的世界解释中诞生的宇宙》中提出的框架,这一假设表明光子充当空间和信息坐标的信使,为波函数坍缩、量子纠缠和延迟选择实验提供了新的解释。这种方法将全息原理与量子力学相结合,有可能连接现代物理学的两个基础理论。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
LED源产生的照明灯分为两个单独的臂。放置样品的对象臂以及设置参考样品(空白)的参考臂。每个手臂中的梁通过插入的样品,并在显微镜的图像平面上组合,在那里它们会干扰并创建全息图。然后通过检测器记录全息图,并通过计算机实时从全息图中提取定量相位图像。最终输出是相位图像,其中样品的每个部分的光延迟(相位移位)被存储为相应图像像素中的定量值。
可重编程的元图在物理和信息域之间建立了一个引人入胜的桥梁,可以实时控制电磁(EM)波,因此吸引了世界各地的研究人员的注意力。要控制具有任意极化状态的EM波,希望独立控制一组基集状态,因为具有任意极化状态的入射EM波可以分解为这些基础状态的线性总和。在这项工作中,我们介绍了反射性仪式的完整基础可抵制编码元表(CBR-CM)的概念,该概念可以实现对反射阶段的独立动态控制,同时维持左手圆形极化(LCP)的幅度相同的振幅,并保持相同的振幅。由于LCP和RCP波共同构成了平面EM波的完整基集,因此可以在任意极化波发生率下生成动态控制的全息图。实现了动态可重构的元粒子,以证明CBR-CM在LCP和RCP波下独立控制全息图的纵向和横向作用的强大能力。预计拟议的CBR-CM可以通过多个独立的信息渠道来实现更复杂和高级设备的方法,这可能会为数字EM环境复制提供技术帮助。
摘要。为了模拟多纵向模式和中心频率快速波动的影响,我们分别使用了正弦相位调制和线宽加宽。这些效应使我们能够降低主振荡器激光器的时间相干性,然后我们将其用于进行数字全息实验。反过来,我们的结果表明,相干效率随条纹可见度二次下降,并且我们的测量结果与我们的模型一致,正弦相位调制的误差在 1.8% 以内,线宽加宽的误差在 6.9% 以内。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.10.102406]
摘要。深度神经网络(DNN)越来越多地在应用科学的各种领域中使用,尤其是在计算机视觉和图像处理等领域,它们可以增强仪器的性能。各种高级相干成像技术,包括数字全息图,利用卷积神经网络(CNN)或视觉变压器(VIT)等不同的深层体系结构。这些体系结构能够提取不同的指标,例如自动关联重建距离或3D位置确定,促进自动显微镜和相位图像恢复中的应用。在这项工作中,我们提出了一种使用Gedankennet模型的改编版本的混合方法,并与UNET样模型相结合,目的是访问Micro-Objects 3D姿势测量。这些网络在模拟全息数据集上进行了培训。我们的方法在推断3D姿势时达到了98%的精度。我们表明,Gedankennet可以用作回归工具,并且比微小的(TVIT)模型更快。总体而言,将深层神经网络整合到数字全息显微镜中和3D计算机微视频中,有望显着提高全息图的稳健性和处理速度,以精确的3D位置推理和控制,尤其是在微型机器人应用中。
考虑到双重全息模型,我们研究了永恒ADS D -RN黑洞的黑洞信息悖论,并与平衡耦合,并与D维二维形成型浴缸偶联,其状态已被带电标量耦合到U(1)球场的带电标量造成的状态变形。没有勃雷,边界系统上量规场的自发对称断裂可以在临界温度(称为全息超导体)处诱导带电标量场的二阶相变。浴室变形可以用黑洞显着改变其纠缠动态,从而导致页面曲线和页面时间的变化。我们的结果表明,可以将页面曲线的特征参数(例如纠缠速度,初始面积差异和页面时间)用作合适的探针,以检测超导相变。特别是,纠缠速度还可以探测卡斯纳流动和约瑟夫森振荡。将辐射区域的终点固定在临界页点的两倍时,纠缠速度(内部反应)比初始面积差异(外部反射)对页面时间的影响更大。
可重编程的元图在物理和信息域之间建立了一个引人入胜的桥梁,可以实时控制电磁(EM)波,因此吸引了世界各地的研究人员的注意力。要控制具有任意极化状态的EM波,希望独立控制一组基集状态,因为具有任意极化状态的入射EM波可以分解为这些基础状态的线性总和。在这项工作中,我们介绍了反射性仪式的完整基础可抵制编码元表(CBR-CM)的概念,该概念可以实现对反射阶段的独立动态控制,同时维持左手圆形极化(LCP)的幅度相同的振幅,并保持相同的振幅。由于LCP和RCP波在一起构成了平面EM波的完整基集,因此可以在任意极化波发生率下生成动力控制的全息图。实现了动态的可重构元粒子,以证明CBR-CM在LCP和RCP波下独立控制全息图的纵向和跨性别位置的强大能力。预计拟议的CBR-CM开设了实现具有多个独立信息渠道的更复杂和高级设备的方法,这可能为数字EM环境复制提供技术援助。
这项工作引入了全息量子计算,这是一种利用全息原理和ADS/CFT对应的新型范式,以解决量子信息处理中的关键挑战,例如可伸缩性和误差校正。通过在较高维空间的边界上对量子信息全息编码,我们提出了一个框架,与传统的基于Qubit的方法相比,该框架可显着改善可伸缩性和错误弹性。我们全面的全息量子量子组合的综合理论模型包括构建具有固有误差校正特性的全息量子误差校正代码,并构建较低的跨开销,以实现容错。我们提出了利用信息的几何编码的新颖性,例如在弯曲空间上量子步行和双曲线图中的路径求解,表明了潜在的加速和资源效率。此外,我们探索了全息框架内的标准量子算法(如量子傅立叶变换(QFT))的实现。本文还使用模拟量子模拟器,超导量子阵列和混合经典量词系统详细介绍了物理实施策略,从而突出了实现全息量子计算机的实用途径。我们的结果表明,全息量子计算不仅增强了量子计算的能力,而且还可以深入了解量子信息,时空和重力之间的基本联系。这种相互交流的方法在量子计算和基本物理学方面打开了新的边界,从而在量词后加密,量子模拟和加速科学发现中提供了潜在的突破。
这项工作引入了全息量子计算,这是一种利用全息原理和 AdS/CFT 对应来解决量子信息处理中的关键挑战(例如可扩展性和纠错)的新范式。通过在高维空间的边界上全息编码量子信息,我们提出了一个框架,与传统的基于量子比特的方法相比,该框架在可扩展性和错误恢复方面有显著的改进。我们用于全息量子计算的综合理论模型包括构建全息量子纠错码,该码具有内在的纠错特性和较低的容错开销。我们提出了利用信息几何编码的新算法,例如弯曲空间上的量子行走和双曲图中的路径查找,展示了潜在的加速和资源效率。此外,我们还探索了在全息框架内实现标准量子算法,例如量子傅里叶变换 (QFT)。本文还详细介绍了使用模拟量子模拟器、超导量子比特阵列和混合经典量子系统的物理实现策略,重点介绍了实现全息量子计算机的实用途径。我们的结果表明,全息量子计算不仅增强了量子计算的能力,而且还深入了解了量子信息、时空和引力之间的基本联系。这种跨学科方法开辟了量子计算和基础物理学的新领域,为后量子密码学、量子模拟和加速科学发现提供了潜在的突破。