液晶(LC)全息光栅用于多种光学应用,包括安全性,密码学,数据固定,光学过滤器和显示器。1–3通过两种相干激光束的干扰,将全息光栅放入LC,单体和引发剂的混合物中,这些激光束在单体和液晶的混合物中形成了空间调节的折射率变化。文献中已经报道了两种类型的全息图案液晶光栅:传播和反射光栅。在传输光栅中,两个相干激光束在同一样品区域上通过样品传输。对于反射光栅,将两个梁暴露于相反的样品平面,从而形成平行于样品表面的层结构。据报道,分层的液晶光栅是policryps(聚合物液晶聚合物切片)4-7或全息图
在本研究中,我们进行了全息研究,以估计反作用对形成热场双态 (TFD) 的两个子系统之间的相关性的影响。每个子系统都被描述为强耦合的大 N c 热场理论,而赋予它的反作用则源于均匀分布的重静态夸克。我们在此考虑的 TFD 状态全息地对应于两个 AdS 黑洞的纠缠态,每个黑洞都由均匀分布的静态弦变形。为了在存在反作用的情况下对两个纠缠边界场理论之间的相关性进行全息估计,我们计算了反作用永恒黑洞中的全息互信息。早期扰动的后期指数增长是边界热场理论中混沌的标志。利用对偶体积理论中的冲击波分析,我们通过计算全息蝴蝶速度来表征这种混沌行为。我们发现,由于依赖于反作用参数的修正项,蝴蝶速度有所降低。早期扰动的后期指数增长会破坏双边关联,而反作用总是有利于双边关联。最后,我们计算了纠缠速度,它本质上编码了两个边界理论之间关联的破坏率。
高斯定律意味着 P Ω = | Ω ⟩⟨ Ω | ∈ 是算子边界代数的一个元素,并且是边界代数中算子的乘积 ∈ 边界代数 ⇒ 算子的完整集 | a ⟩⟨ b | 属于边界代数。
光遗传学引发了神经科学家研究大脑功能的革命。由于技术限制,大多数光遗传学研究都采用了低空间分辨率激活方案,这限制了可以进行的扰动类型。然而,在更精细的空间尺度上操纵神经活动可能对更全面地了解神经计算非常重要。空间精确的多光子全息光遗传学有望解决这一挑战,并开辟了许多以前不可能实现的新实验类型。更具体地说,通过提供在功能定义的神经元集合中在空间和时间上重建极其特定的神经活动模式的能力,多光子全息光遗传学可以让神经科学家揭示感觉、认知和行为神经代码的基本方面,而这些方面此前是无法实现的。本综述总结了多光子全息光遗传学的最新进展,这些进展大大扩展了其功能,强调了突出的技术挑战,并概述了它可以执行的实验类型,以测试和验证大脑功能的关键理论模型。多光子全息光遗传学可以帮助关闭实验和理论神经科学之间的循环,从而显著加快神经科学发现的步伐,从而对神经系统功能和疾病带来全新的根本性见解。
光遗传学在神经科学家如何询问大脑功能方面涉及一场革命。由于技术局限性,大多数光遗传学研究采用了低空间分辨率激活方案,从而限制了可以进行的扰动类型。然而,更精细的空间尺度上的神经活动操作对于更充分理解神经计算可能很重要。在空间上精确的多光子全息光遗传学有望应对这一挑战,并打开许多以前无法实现的新型实验。更具体地说,通过提供在功能定义的神经元合奏中重现极其特定的神经活动模式的能力,多光全息光遗传学可以使神经科学家能够揭示神经代码的基本方面,以实现感觉,认知和超越已达到的行为。本综述总结了多变量全息光遗传学的最新进展,这些遗传学大大扩展了其能力,突出了出色的技术挑战,并概述了可以执行的实验类别以测试和验证脑功能的关键理论模型。多光子全息光遗传学可以通过帮助结束实验性和理论神经科学之间的循环,从而显着加速神经科学发现的速度,从而导致对神经系统功能和障碍的基本新见解。
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
在没有全息原理 [3, 4, 5] 的传统量子引力解释 [1, 2] 中,量子态是整个宇宙的量子态。在这种解释中,玻恩规则的一个典型应用是暴胀多元宇宙场景 [6, 7, 8]。作者采取不同的方法,在三维反德西特时空/二维共形场论 (AdS 3 /CFT 2 ) 对应 [11, 12, 13, 14] 的背景下,在边界 CFT 2 的强耦合极限 [15, 16, 17, 18, 19, 20, 21, 22, 23],提出了一种基于全息原理 [3, 4, 5] 的量子引力新解释 [9, 10]。在这种量子引力解释中,对基态或空间纯化量子热平衡态,即全息张量网络(HTN)[19, 20, 21]进行非选择性量子测量[24],在量子力学的集合解释中,是通过完全消相干该量子态的量子相干性来实现的。消相干(即可观测量量子干涉的损失)正是通过引入超选择规则算子,然后将作用于 HTN 的希尔伯特空间的可观测量集限制为阿贝尔集(其元素与超选择规则算子可交换)来实现的[25]。作者将这种退相干称为经典化。量子引力的经典化不是经典引力;事实上,HTN 的经典化状态仍然是一种量子态,但却是一种高度非平凡的混合态。由于该量子态是乘积量子本征态的统计混合,因此存在负局部自由度 [10, 25]。到目前为止,我们已经在 HTN 的欧几里德区域对空间进行了经典化,即边界 CFT 2 的纯净量子热平衡态(包括基态)[9, 10, 25, 26]。然后,为了在 Lorentzian 区域中制定时间相关的 HTN,
全息原理认为,体空间的自由度 (DoF) 被编码为边界量子场系统的信息 [1, 2, 3]。该原理的已知例子有黑洞熵 [4, 5, 6, 7] 和 d + 2 维反德西特时空/d + 1 维共形场论 (AdS d +2 /CFT d +1 ) 对应关系 [8, 9, 10, 11]。在发现 AdS d +2 /CFT d +1 对应关系中的全息纠缠熵的 Ryu–Takayanagi 公式 [12, 13, 14, 15] 后,多尺度纠缠重正化假设 (MERA) [16, 17] 被提出作为该公式背后的体量子纠缠的全息张量网络 (HTN),其中 d = 1 为零温度 [18, 19]。这里,MERA 是通过解纠缠器层(对我们而言是二分量子比特门)和粗粒化器层(等距)的半无限交替组合对量子比特中边界 CFT 2 的量子基态进行实空间重正化群变换 [16, 17]。MERA 是一个尺度不变的张量网络。基于对 HTN 的初步研究 [18, 20, 21],本文作者对 HTN 进行了经典化 [22, 23, 24, 25]。其中,HTN 的经典化是指在 HTN 中采用单量子比特的第三 Pauli 矩阵作为超选择规则算子 [25]。即,作用于 HTN 的希尔伯特空间的量子力学可观测量需要与第三 Pauli 矩阵交换,并根据这种交换性进行选择。HTN 经典化后,经典化全息张量网络 (cHTN) 的量子态对于所选可观测量在第三 Pauli 矩阵的特征基上没有量子干涉,因此等价于经典混合态,即第三 Pauli 矩阵乘积特征态的统计混合,
重力会限制计算吗?我们使用 AdS/CFT 对应关系研究这个问题,其中重力存在下的计算可以与边界理论中的非重力物理相关联。在 AdS/CFT 中,在块体中局部发生的计算以边界中的特定非局部形式实现,这通常需要分布式纠缠。更详细地说,我们回想一下,对于一大类块体子区域,称为脊的表面面积等于边界中可用于非局部执行计算的互信息。然后我们认为局部操作的复杂性控制着非局部实现它所需的纠缠量,特别是复杂性和纠缠成本由多项式关联。如果这种关系成立,重力会将这些区域内操作的复杂性限制为脊面积的多项式。
重力会限制计算吗?我们使用 AdS/CFT 对应关系研究这个问题,其中重力存在下的计算可以与边界理论中的非重力物理相关联。在 AdS/CFT 中,在块体中局部发生的计算以边界中的特定非局部形式实现,这通常需要分布式纠缠。更详细地说,我们回想一下,对于一大类块体子区域,称为脊的表面面积等于边界中可用于非局部执行计算的互信息。然后我们认为局部操作的复杂性控制着非局部实现它所需的纠缠量,特别是复杂性和纠缠成本由多项式关联。如果这种关系成立,重力会将这些区域内操作的复杂性限制为脊面积的多项式。