摘要。在试飞期间,原型机载数字全息仪器 HOLODEC(云全息探测器)获取全息数据,对其进行数字重建,以获得冰粒的尺寸(等效直径在 23 至 1000 µ m 范围内)、三维位置和二维图像,然后使用自动算法计算冰粒尺寸分布和数量密度,几乎无需用户干预。全息方法具有样本体积大小明确且不受颗粒尺寸或空速影响的优点,并提供了一种检测破碎颗粒的独特方法。全息方法还允许将体积采样率提高到超过原型 HOLODEC 仪器的采样率,而后者仅受相机技术的限制。在云的混合相区域中获取的 HOLODEC 尺寸分布与试飞期间飞机上 PMS FSSP 探测器的尺寸分布非常吻合。利用沿光轴的深度位置检测破碎粒子的保守算法可从数据集中消除明显的冰粒破碎事件。在这种特殊情况下,与所有粒子的尺寸分布相比,当量直径为 15 至 70 µ m 的粒子的非破碎粒子的尺寸分布减少了大约两倍。
我们研究了淬灭后全息超流体的放松,当末端状态被调谐到临界点,或者非常接近它时。通过以数值方式求解运动的整体方程,我们证明了在前一种情况下,该系统表现出功率定律的损失以及紧急的离散量表不变性。后一种情况是由临界放慢速度主导的政权,我们表明,在较晚时间级别的衰减开始之前,有一个中间的时间范围,该系统的行为与其功率定律下降的临界点相似。我们进一步假设一个现象学的毛 - 皮塔维斯基样方程(对应于Hohenberg&Halperin的模型F),该方程能够对近临界淬灭的全息超氟化后的全息超氟中全息超流体的行为进行定量预测。有趣的是,描述非线性时间演化的现象学方程的所有参数都可以用静态平衡溶液和线性响应理论的信息来固定。
波束成形是使用具有高增益的定向窄波束,通过天线阵列将功率集中在最小的角度范围内进行发射和接收。它提供更好的覆盖范围和吞吐量、更高的信干噪比 (SINR),并且可用于跟踪用户。全息波束成形是一种利用软件定义天线 (SDA) 的先进波束成形方法。全息是指使用全息图通过天线实现波束控制,其中天线就像光学全息图中的全息板;来自无线电的射频信号流入天线的背面并散射到其正面,其中微小元件调整波束的形状和方向,如图 3 所示。与传统的相控阵或 MIMO 系统相比,SDA 更便宜、更小、更轻、功耗更低 [34]。由于 C-SWaP(成本、尺寸、重量和功率)被视为任何通信系统设计的主要挑战,因此在 HBF 中使用 SDA 将实现 6G 中灵活、高效的发送和接收。
等,2022)由自由能原理(FEP)诱导。除了是一项数学和物理上丰富的努力之外,该演讲还强调了 FEP 是一项重要的科学原理。我们将只关注这些含义之一,即 Friston 等人(2023)图 2 中呈现的定性不同系统类别的类型学。我们首先回顾所呈现的相关区别,即马尔可夫毯(MB)的感知和活动状态与内部和外部状态(即感兴趣的系统 A 的状态及其物理环境 B )之间的因果关系。然后,我们考虑当经典 MB 被全息屏幕取代时会发生什么,全息屏幕在 FEP 的量子信息理论公式中充当 MB 的功能(Fields、Friston、Glazebrook & Levin,2022;Fields 等,2023)。经典 MB 与全息屏幕之间最明显的区别在于,MB 的状态是“宇宙”状态空间的元素,A 和 B 是其组成部分,而全息屏幕的状态是该空间的附属状态。我们将展示这种差异在质量上区分了 FEP 的经典和量子公式。特别是,当经典 MB 被全息屏幕取代时,Friston 等人 (2023) 的图 2 中所示的系统类别之间的区别就会消失。不仅所有量子系统都以图 2 中定义的意义活跃,而且所有量子系统都是奇异的,并且可以被视为“推断”自己的行为,我们将继续解释。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
在存在化学势和温度的情况下,我们全息地研究了具有临界点的非共形量子场论中的子区域复杂性。我们提出了一种新的解释,根据这种解释,需要指定(更多)更少信息的状态表征(不)稳定的热力学解。我们分别观察到化学势和温度对全息子区域复杂性的增加和减少的影响。这两种相反的行为导致混合状态的子区域复杂性与零温度共形场论的该值相同。我们还提出了全息子区域复杂性的最小值和最大值(临界点附近的值)之间差异的新描述,作为进行计算工作的资源,以从远离临界点的状态准备接近临界点的状态。我们还计算了临界指数。
过去二十年,凝聚态物理、核物理、引力和量子信息等多个原本毫不相关的学科之间出现了惊人的联系,这得益于实验的进步以及全息对偶带来的强大新理论方法。在这篇非技术性评论中,我们介绍了全息对偶与量子多体动力学相关的一些最新进展。这些包括对没有准粒子的强相关相及其传输特性、量子多体混沌和量子信息的扰乱的洞察。我们还讨论了使用量子信息理解全息对偶本身结构的最新进展,包括对偶的“局部”版本以及具有引力对偶的量子多体态的量子误差校正解释,以及这些概念如何有助于证明黑洞蒸发的幺正性。
抽象的低毒性太阳能集中器系统代表了未偿还光伏(PV)应用的重要挑战。尤其是,作为全息浓缩剂(HSC)的多重全息镜(MHL)提供了对建筑集成浓缩PVS有希望的可能性的见解。该技术不会影响关键的生态系统,并且可以将建筑物从能源消费者转化为能源供应商。它们可用于窗户,屋顶或墙壁,并且需要高衍射效率和广泛的验收角。在这项工作中,我们基于低毒性光聚合物,介绍了低空间频率525线MM-1的MHL的几种设计,并在窗玻璃上支撑。在633 nm处评估了这些HSC的平均衍射效率,而通过在不同入射角下太阳照明下的短路电流来评估接受角度。多功能和高效率全息元素已被用来集中到白天不同相对位置的阳光,避免了对昂贵的跟踪系统的需求。据我们所知,这是低毒性全息太阳浓缩器中高衍射效率(85%)和广泛接受角(104°)之间的最佳权衡。
4G 和 5G 提供的当前延迟和数据容量不足以满足即将到来的应用需求。例如,远程诊断和全息远程手术将需要 1-10Gbit/s 的带宽。5G 限制为 1Gbit/s,而 6G 将能够提供高达 100Gbit/s 的速度。其他应用,如自动驾驶汽车、无人机互联网和全息通信,也需要非常低的延迟,低于 1ms,这是 5G(延迟为 5ms)无法提供的 11。下一代视频传感器的部署还需要增强的移动宽带、更低的延迟和更高的可靠性。这些设备将改善实时视频通信和全息应用的用户体验,并支持实时数字孪生模型(如用于 VR/XR/MR、物联网、全息图、3D 显示器、工业 4.0 等)。)。
摘要:我们考虑时间演化算子的对数负性和相关量。我们研究自由费米子、致密玻色子和全息共形场论 (CFT) 以及随机幺正电路和可积和混沌自旋链的数值模拟。全息行为与已知的非全息 CFT 结果有很大偏差,并显示出最大扰乱的明显特征。有趣的是,随机幺正电路表现出与全息通道几乎相同的行为。一般来说,我们发现“线张力图像”可以有效地捕捉混沌系统的纠缠动力学,而“准粒子图像”可以有效地捕捉可积系统的纠缠动力学。出于这个动机,我们提出了一种有效的“线张力”,可以捕捉时空缩放极限中混沌系统中对数负性的动态。我们比较了负性和互信息,从而发现量子信息和经典信息的不同动态。我们观察到的“伪纠缠”可能对经典计算机上量子系统的“可模拟性”产生影响。最后,我们使用测地线维滕图阐明了共形场论中密度矩阵部分转置运算与反德西特空间中纠缠楔形截面之间的联系。