摘要。光学超表面已成为光子学的一项突破性技术,它利用超薄表面纳米结构在亚波长尺度上对光 - 物质相互作用提供无与伦比的控制,从而催生了平面光学。虽然大多数已报道的光学超表面都是静态的,具有由制造过程中设定的成分和配置决定的明确定义的光学响应,但通过施加热、电或光刺激具有可重构功能的动态光学超表面的需求越来越大,并成为研究和开发的前沿。在各种类型的动态控制超表面中,电可调光学超表面因其响应时间快、功耗低和与现有电子控制系统兼容而显示出巨大的前景,为通过电调制动态可调光 - 物质相互作用提供了独特的可能性。在这里,我们全面概述了在这个快速发展的领域中探索的最先进的设计方法和技术。我们的工作深入研究了电调制的基本原理、实现可调性的各种材料和机制以及主动光场操纵的代表性应用,包括光振幅和相位调制器、可调偏振光学器件和波长滤波器以及动态波整形光学器件(包括全息图和显示器)。本综述以我们对电触发光学超表面未来发展的看法结束。
Terahertz(THZ)技术已成为下一代无线通信和广泛应用的令人兴奋的边界。THZ频段的空前带宽允许超高的数据速率,在无线虚拟现实,高清多媒体流媒体,高保真移动全息图和无线芯片芯片通信方面开辟了令人兴奋的机会。但是,部署THZ系统提出了重大的网络和安全挑战,必须应对这些挑战,以充分实现该技术的潜力。本文全面分析了THZ通信的关联网络和安全问题,这些网络和安全问题是根据2014年至2024年之间发表的相关文献。信号传播和路径丢失,光束跟踪和对齐方式以及有效的网络体系结构和干扰管理技术的设计是解决的一些关键网络挑战。在安全性方面,本文着眼于物理层安全性,窃听和阻塞威胁,以及针对启用THZ的设备的硬件安全性和可信赖的计算注意事项。分析强调了THZ信号的独特特征,例如它们的高方向性,对分子吸收和阻塞的敏感性以及独特的传播行为,这既带来了网络和安全的机会和挑战。创新的解决方案和鲁棒的安全机制,例如指导调制,基于波束的安全性,安全的钥匙分配协议和基于硬件的证明技术,以解决这些挑战的潜在方法,从而帮助并指导未来的研究工作。
抽象的脑肿瘤手术需要在完全去除肿瘤组织的同时最大程度地减少脑功能丧失之间进行微妙的权衡。功能磁共振成像(fMRI)和扩散张量成像(DTI)已成为对人脑功能的非侵入性评估的有价值工具,现在用于确定应避免的大脑区域以防止功能障碍后的功能障碍。但是,图像分析需要不同的软件包,主要是出于研究目的而开发的,并且通常在临床环境中很难使用,从而阻止了前库氏映射的大规模扩散。我们开发了一种专门的软件,能够在单个应用程序中对多模式MRI Presurgical映射进行自动分析,并将结果转移到神经元操作器中。此外,使用优化的混合现实方法将成像结果集成在市售可穿戴设备中,并自动锚定从MRI获得的3维全息图,并使用患者的身体头部固定。这将使外科医生能够实际上探索更深的组织层,突出了需要保留的临界大脑结构,同时保留了天然的Oculo-Mans协调。该程序的增强人体工程学将显着提高手术的准确性和安全性,并为医疗保健系统和相关工业投资者提供巨大的预期收益。
与同时量身定制的空间和时间特性的超短脉冲合成在多模光子学中打开了新的视野,尤其是当空间自由度由可靠的拓扑结构控制时。当前的方法是在其拓扑电荷和光谱成分之间具有相关性的时空光束的当前方法产生了引人入胜的现象。然而,整形通常仅限于狭窄的拓扑和/或光谱带,极大地限制了可实现的时空动力学的广度。在这里,我们引入了一个用于超宽带脉冲的傅立叶时空塑形器,覆盖了近50%的可见光谱,并带有多种拓扑费用,值高达80。我们的方法不用依靠线性几何形状来依靠传统的光栅,而是采用带有圆形几何形状的衍射阳极,允许将方位相调制赋予带有轨道角动量的光束。我们通过基于高光谱离轴全息图引入一种表征技术来检索时空场。线性拓扑光谱相关性的剪裁能够控制波数据包的几种特性,包括其手性,轨道半径和相互缠绕的螺旋数,而复杂的相关性使我们能够操纵它们的动态。我们的带有宽带拓扑内容的时空束将使超高光激发,显微镜和多重功能中的许多新应用。
摘要 人工智能被呈现为持续变化的最好例子,这使得讨论的领域不断扩大。它所提出的方向永远不符合所提出的定义。此外,还需要制定在实证法和宗教法中与人工智能直接相关的国家法和国际法。为了正确解决人工智能问题,需要了解一些初步信息。其中最重要的是:大脑、身心问题、心智讨论、脑机比较(大脑建模)、数学现实、经典-符号-模糊逻辑(人工智能、人工智能对决策的影响)、算法、数据、大数据、云技术、机器学习、深度学习、自主性、优化(元启发式)、遗传算法、机器人(半机械人)、安全(数据和国家-国际)、人工智能系统和人工智能讨论、个人数据安全、责任、计算。还应当注意的是,以下内容在人工智能背景下也很重要:控制论、数字化、控制论系统、虚拟现实(如模拟、虚拟/电子环境中的全息图、网络危机和生活虚拟性)可以作为主要内容列出、添加或删除。然而,尽管人工智能系统越来越多地被用于做出影响个人和社会的决策,但这些系统基于数据集学习的事实并不能保证它们的输出不受人类偏见和歧视的影响,这是一个重大问题。声称人工智能司法将比人类的判决更为公正,尤其是在法律方面,似乎忽视了人工智能系统的这些方面。因为人工智能的每一次新用途,造成不平等、歧视和侵犯个人数据保护权的风险都会增加。
Covid显然一直是过去18个月的重中之重。我们学到了一些重要的教训:•永远不要低估我们的员工。我们的社区以灵活性,创造力和韧性回应了一系列前所未有的挑战。•新的工作方式。我们将围绕混合家庭/办公室工作制定新的政策。将对我们使用空间有影响。•如何使用在线会议。尽管“团队疲劳”,减少面对面的会议也有一些真正的好处。•更具创意的教学。我们正在了解如何从在线(用于讲座)和面对面增强的结合中获得最佳教学价值。•更好的考试和评估。基于公开考试问题和延长的响应期(针对不同时区量身定制的)的新程序使我们对评估学习成果的不同方式有所了解。•转向在线讲座/研讨会意味着大型团体更容易参与 - 并从全国(甚至是世界)中这样做。•平等,多样性和包容性。不同的学生群体之间的影响有所不同。我们开始了解如何以及如何处理它。一些学生,尤其是那些残障人士,从新的重视远程学习中受益。•研究。尽管许多最关键的互动和合作仍需要个人联系,但“变焦经济”使我们解放了更多的国际互动。•招聘。我们在2019年提高数字形象的举动使我们能够迅速发展在线开放日,虚拟旅行,甚至我们的第一个全息图(https://holome.online/kent/)。•弹性和创新数字能力的重要性。新的数字策略必须是肯特的核心。
电磁诱导的透明度(EIT)是一个连贯的光学过程,在原子培养基中的宽吸收线中提供狭窄的透明峰。EIT的全dielectric跨表面类似物已使纳米光子学场中的新发展获得了较小,更有效的慢灯设备和高度敏感的检测器,而无需量子方法。然而,尽管近红外(N-IR)区域很少报道全磁化元面的EIT响应的动态控制,尽管通过可重新配置的EIT系统将启用更广泛的应用程序。在这项研究中,我们意识到了硫元素(GST)的硫元化物(GST)元素元面,它通过光学地驱动GST培养基中的无定形 - 晶状相变的变化,具有动态调节的EIT响应。只有几十纳米厚,纳米结构的GST膜表现出MIE共振,这些共振通过激光诱导的相变经频谱修饰,在N-IR区域提供了高度相对调制的对比度为80%。此外,在此透明度“窗口”中观察到导致“慢光”行为的极端分散体。此外,N-IR梁的组延迟在相变下可逆开关。测量与数值模拟结果和现象学建模既一致。我们的工作促进了新型紧凑型超快N-IR全息图,过滤和超敏感探测器的发展。
摘要图像处理设备和技术的快速演变确保了新型图片分析方法的发展。是测量功能拓扑特性的最强大但计算可能的代数技术之一是持续的同源性。这是一个代数不变的,可以在不同的空间分辨率下捕获拓扑细节。持续的同源性使用一组采样点(例如像素)研究了空间的拓扑特征。它可以跟踪由被称为过滤的操作产生的嵌套空间变化引起的拓扑特征的外观和消失,在这种操作中,在我们的情况下,参数量表增加了像素的强度,以检测在各种尺度范围内研究空间的变化。此外,在机器学习的层面上,最近有许多研究和文章目睹了同源性持久性与机器学习算法之间的结合。在另一个层面上,前列腺癌被诊断为描述称为格里森评分的癌症严重程度的评分标准。经典的格里森系统定义了五种组织学生长模式(等级)。在我们的研究中,我们建议研究从新的光学显微镜技术发行的一些腺体上的格里森评分,称为Slim。这种新的光学显微镜技术在光成像中结合了两个经典的思想:Zernike的相比显微镜和Gabor的全息图。在这些图像上计算持续的同源性特征。我们建议将这些图像分类为相应的格里森评分。在同源持久性特征上应用的机器学习技术在这些图像中检测前列腺癌的正确格里森评分非常有效,并且表现出高于95%的精度。
本文详细讨论了电子皮肤 (e-skin) 研究的最新进展,重点介绍了三个关键应用所需的技术:可附着在皮肤上的电子设备、机器人和假肢。电子设备对于开发用于各种应用的简单设备至关重要。电子设备是所有领域所必需的。人造皮肤是最出色的成就,也是医疗行业集成电子设备的未来典范。它是一种超薄电子设备,可以像纹身一样附着在皮肤上,并测量心脏的电活动、脑电波和其他关键信息。人造皮肤是在实验室中制造的皮肤。它可以用于机器人应用,也可以作为严重烧伤或皮肤病患者的皮肤替代品。本研究重点介绍人造皮肤 (E-Skin),它用于制造一种与人类皮肤类似的皮肤,并植入许多作用于皮肤的感觉或触觉。现在正在组装这种皮肤。它由数百万个植入式电子测量设备组成,包括恒温器、压力计、污染检测器、摄像头、麦克风、葡萄糖传感器、心电图和电子全息图。这个装置将推动技术发展,并大大扩大机器人探测器在人类无法到达的地方的使用。该传感器可能为一系列新应用程序开辟道路,这些应用程序可以远程监控患者的生命体征和身体运动,将数据直接发送到计算机,计算机可以记录和存储这些数据,以帮助做出未来的选择。本文讨论了这些问题,重点是进展、当前的障碍和未来的潜力。
这项关于我们大脑内部特定分子如何形成相位空间中动态信息整体,联系思想和意识的动态信息整体的开创性研究,不仅具有挑衅性,而且是革命性的。载体是源自荷兰观点的动态封装,源自“ holon”一词,并指定了统治而不是层次,动态的大脑组织,以涵盖多尺度效应。意识的统一性是相互联系的,源于大脑的多阶层组织。我们旨在使用时空间歇性对热力学方法进行自动修改,以解决意识问题。从准颗粒开始为动力学大脑的极简物质组成,其中干扰了准粒子的不相干波及其量子热波动,这限制了内源性分子的动力学内源性分子的动力学内源性通道的动力学内部能量。这表明大脑不是涉及雪崩的多重术,而是多肠,这表明与全息图不同,在光谱结构域中,功能相互作用发生的情况下,时空结合是多阶段的,这是多结合,因为自我参考的扩增会通过远距离的矛盾信息而发生。相关的负面纠缠渗透到跨多个尺度的功能信息体系结构的统一。因此,自动脑理论适合于主动意识,证明意识不是基本的。大脑内部空间的自动模型是非美度和非属性的。它包含一个由跨胶源性量子电位的波动中的间歇性尖峰解码的多粘性信息结构。因此,这是一种比相位空间中柏拉图模型更现实的方法。