1。BP PLC集成生产5.41%2。Shell PLC石油和天然气生产5.15%3。Vistra Corp Electric Utilities 4.60%4。Nuvista Energy Ltd石油和天然气生产4.23%5。流动能源公司Cl A多元化技术4.04%6。Suncor Energy Inc综合生产3.84%7。rwe ag多元化公用事业3.82%8。Cenovus Energy Inc整合生产3.59%9。Headwater Exploration Inc石油和天然气生产3.42%10。埃克森美孚公司集成生产3.14%11。少尉能源服务公司石油和天然气生产3.08%12。电气石油公司石油和天然气生产2.79%13。Transalta Corp Electric Utilities 2.59%14。AESCorp Electric Utilities 2.59%15。EOG Resources Inc石油和天然气生产2.38%
“海洋环境仍然被低估,尤其是开阔的海洋和深海。” - 2021年5月的葡萄牙代表“尽管科学同意需要30%的陆地和海洋区域保护,但一些研究汇总了这样的想法,即到2050年50%的保护可以保护海洋和陆地生物多样性,同时保存生态系统服务。” - 2021年5月的法国代表。上面的陈述是在《生物多样性公约》(CBD)的科学,技术和技术建议(SBSTTA-24)的第24届会议上(第1部分)的开放全体会议期间发表的。他们体现了许多代表所表达的观点,即:i)在CBD 2020后全球生物多样性框架(GBF)的早期草案中未能指定“海洋”生物多样性是不可接受的; ii)CBD应解决国家管辖区以外地区的海洋生物多样性(ABNJ); iii)优先考虑海洋保护区(MPA)的进一步扩展。作为研究人员自2008年以来研究CBD和其他国际组织中的海洋问题的研究人员,我们发现代表队伍呼吁更多地关注海洋生态系统,既值得关注又不令人惊讶。在本文中,我们呼吁在全球生物多样性保护的更广泛的领域中要求“更多的海洋”,并分析了如何随着时间的推移来实现全球海洋生物多样性保护的“领域”。这篇文章是从我们的工作中出现的,这是一项更大的研究合作的一部分,该协作研究了国际会议(如SBSTTA-24)在全球环境治理(GEG)中的作用。但是,我们描述的领域是部分的,反映了geg“包括在全球领域中塑造环境行动和成果的机构,过程,倡议,参与者和组织”(O'Neill等人,2013,443)。其特征是“不确定性和复杂性,跨生态和政策的多量表联系,跨发行区域的水平联系以及迅速发展的问题和制度计划”(Campbell等,2014a,3)。这些特征使GEG难以研究,但是国际会议是对GEG进行研究的一个地方(Brosius和Campbell,2010; MacDonald,2010; Campbell等,2014a),我们采用了人种学研究方法来支持它(Corson等,2014年; Gray等,202020202020)。使用我们所谓的协作事件人种志(CEE),我们已经在连续的国际会议上建立了对geg的了解,这些国际会议跨越了十五年(参见Corson等,2019)。在本文中,我们假设国际会议在GEG中的作用,并将注意力转向指定各种参与者在会议上的工作如何有助于确认全球海洋生物多样性保护领域。我们将其描述为“机构生活的公认领域”(Dimaggio and Powell,1983,148),并说明了它是如何由国际会议塑造的,而不是简单地揭示的。在描述和分析全球海洋生物多样性保护的“领域”时,我们没有“声称立即解释世界上的一切”(Tsing,2005年,IX-X)。民族志研究全球过程,其“有限的互连和重叠环境”(Amit,2000,6)总是一定是部分的。因此,我们描述的领域反映了我们在哪些国际会议以及要参加哪些问题以及我们的经验的选择(Corson等,2019)。
NEX-GDDP-CMIP6数据集由源自耦合模型对比计划阶段6(CMIP6)进行的一般循环模型(GCM)得出的全局降低气候场景(GCM)[Eyring等。2016]以及四个“ 1”温室气体排放场景,称为共享社会经济途径(SSP)[O'Neill等。2016; Meinshausen等。2020]。CMIP6 GCM运行是为了支持政府间气候变化小组(IPCC AR6)的第六次评估报告。此数据集包括从方案模型运行的缩小投影[O'Neill等。2016; Tebaldi等。2021]每日场景通过地球系统网格联合会产生和分布。该数据集的目的是提供一组全球,高分辨率,偏见的气候变化预测,可用于评估气候变化对对较小规模的气候梯度敏感的过程的影响以及当地地形对气候条件的影响。
小儿急性髓样白血病(AML)是一种恶性血液学疾病,其特征是骨髓中髓样前体的克隆增生(1)。尽管在了解和治疗小儿AML方面取得了重大进展,但它仍然是儿童与癌症相关死亡率的主要原因(2)。在过去的几十年中,在识别遗传和分子标记中取得了很大进步,这些标志在预测预后和指导治疗结果中起着至关重要的作用(3-6)。这些进步导致了靶向疗法的发展和更精确的风险地层方法,从而显着改善了患者的结果(7-9)。然而,高复发和难治案件的高度继续强调了这一领域正在进行的研究和创新的需求(10)。小儿AML研究中的一个关键挑战是该疾病的固有异质性,这使治疗决策和预后复杂化(11,12)。虽然关键的遗传突变和分子异常(例如FLT3-ITD,WT1,CEBPA突变和KMT2A重排)已被确定为重要的预后标记(13-16),但在我们对这些标记相互作用和促进疾病进步的理解方面仍然存在显着的差距(17)。解决这些差距对于克服复发和难治性疾病的持续挑战以及更好地将个性化治疗策略纳入临床实践至关重要。此分析提供了1999年至2023年小儿AML预后全球研究趋势的全面书目概述。通过检查诸如出版趋势,领先国家,著名的机构,影响力期刊,主要研究类别,著名贡献者,开创性参考和新兴趋势等关键方面,旨在为文件的当前景观和未来的文件提供清晰的快照。分析特别关注基因组学,转录组学和表观基因组学的进步如何塑造预后和治疗结果。此外,它探讨了临床试验在制定治疗方案中的关键作用,并突出了新兴疗法,这些疗法显示出改善患者预后的希望。这种文献计量方法综合了广泛的研究数据,提供了详细的系统概述。通过确定显着的趋势和关键研究,它为研究人员,临床医生和决策者提供了宝贵的见解。
今年的主要主题鼓励安全领导者通过核对内部和外部企业利益相关者之间的差异来建立更牢固的关系。客户,开发人员和业务范围旨在扩大新技术和竞技场(例如Genai,Fintech,PQC,5G和IoT)的信任度。研究数据表明正在取得进展;更大的需求和机会就在未来。内部压力以管理成本冲突,并努力减轻功能更强的对手的攻击。信任,安全,机密性和隐私现在是企业品牌的主要因素,安全领导者可以使用报告见解来建立在其组织之间建立更强大的联盟,以实现一种更加主动,动态的基于风险的安全管理方法。
最重要的是,如果美国不领导,其他国家将填补空白,几乎没有考虑我们的经济利益。这已经在发生。国会未能批准美国国际货币基金组织提出的机构变更后,中国领导了一家新的发展金融银行 - 亚洲基础设施投资银行(AIIB)。AIIB不仅包括我们的竞争对手,而且包括美国最亲密的盟友 - 英国,德国,法国,韩国和以色列。它为美国领导的世界银行提供了可靠的替代方法,使中国对亚洲邻国有更大的杠杆作用。此外,自2003年以来,中国对非洲的官方发展援助增长了780%以上,并且一直在积极与亚洲16个国家的区域综合经济伙伴关系进行谈判,亚洲的16个国家可以将美国排除在占全球GDP近30%的主要市场之外。
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
对低碳运输的追求显着增加了对锂离子电池的需求。然而,电池制造的迅速增加,没有充分考虑与其生产和材料需求相关的碳排放,这构成了在上游上游大部分排放的威胁。在本文中,开发了生命周期评估(LCA)模型,以说明26个中国各省,20个北美地区和欧洲和亚洲的19个国家 /地区的锂离子电池的摇篮到门口足迹。对已发表的LCA数据的分析显示,关键电池材料的碳排放量相关;它们对自由lib的碳足迹的总体贡献因素而异。4取决于生产路线和来源。探索了生产位置与电池制造的闸门碳足迹之间的联系,预测的中值范围在0.1至69.5 kg CO 2 -eq kWh-1中。在美国和欧洲,肯塔基州和波兰等美国领先的西方电池制造地点与中国竞争对手具有可比的碳排放,甚至超过了几个中国省份的电池制造的碳排放。对Libs碳足迹的材料和能源贡献的这种解决方案对于为政策和决策提供了必不可少的,以最大程度地减少电池价值链的碳排放量。鉴于当前的现状,锂离子电池行业的全球碳足迹预计将在未来十年内每年达到1.0 GT CO 2 -EQ。随着材料供应链的脱碳和电池生产中的节能,每年的估计值较低,估计值为0.5 GT CO 2 -EQ。
长期以来,人们已经认识到,与生物多样性保护的保护区对于生物多样性保护至关重要,与在未保护地区观察到的生物多样性相比,储量中的动植物种群群中的种群越来越多。例如,据信保护区阻止了世界大约四分之一的鸟类的灭绝(1)。也有受保护区的“溢出”效应,与储量相比,储量毗邻的位置支持储量更大的种群和物种丰富度,而储备金则更大(2)。因此,储备金对生物多样性具有显着的利益,远远超出了其边界。与储量一样重要,很明显,当前的储备网络不足以保存所有生物多样性,并且迫切需要保护保护区的全球扩张显着(3)。2021年,国际自然保护联盟(IUCN)世界保护大会恳请世界各地的政府设定雄心勃勃的目标,以保护到2030年至少30%的地球。受保护网络的扩展
通过ESA-Future Earth联合计划,邀请未来地球全球研究网络中的研究人员使用地球观察(EO)数据提出案例研究,以解决IPCC气候变化和城市的特别报告的研究主题,并针对低中度收入城市(LMIC)的城市进行了具体的重点。此公开通话旨在将EO数据应用于1)提前了解城市级别的气候影响和风险,或2)开发技术以监控适应性和/或缓解响应方案,以在城市规模上对气候变化和/或其联系。项目应确定与城市利益相关者相关的关键研发挑战,EO可以做出实质性的贡献,并在IPCC文献截止日期(2026年10月)之前提交期刊手稿。项目可以申请20,000欧元 - 30,000欧元的资金。提案的截止日期为2025年2月28日。
