为了与多 GNSS 接收机制造商开展对话,需要对多 GNSS 接收机的时间偏移精度要求进行调查。然而,由于物流和时间表复杂以及成本高昂,很难让全球许多制造商参加授时互操作性研讨会。因此,建议 GNSS 提供商在国内大规模开展调查,并根据调查结果向 ICG 提交报告,以推动 GNSS 时间互操作性的改进。
为了与多 GNSS 接收机制造商开展对话,需要对多 GNSS 接收机的时间偏移精度要求进行调查。然而,由于物流和时间表复杂以及成本高昂,很难让全球许多制造商参加授时互操作性研讨会。因此,建议 GNSS 提供商在国内大规模开展调查,并根据调查结果向 ICG 提交报告,以推动 GNSS 时间互操作性的改进。
今年夏天,两家美国公司进行了处女航班,将其创始人带到80公里以上。这些第一个商业太空旅游的航班只是“报纸”的一个方面:越来越多的公司正在开发并合并新技术以利用太空的商业机会。有些人,例如西班牙的PLD,正在为较便宜的发射器(例如OneWeb)致力于部署大型卫星星座,而另一些则在小行星采矿等越来越有远见的应用程序上再次开发。这些举措并非没有需要解决的问题。如果空中交通对空气污染的贡献是一个问题,那么肯定是为了娱乐的轨道航班。大型卫星星座的发射正在将空前数量的对象插入轨道;这些不仅妨碍了天文观察,而且也极大地增加了现有卫星的碰撞风险。和空间采矿(仍然迄今仍胚胎)已经引发
如今,全球卫星导航系统(GNSS)在许多领域都起着基本作用,例如民航,海上和土地导航和地理器,由于能够在全球范围内提供全球,三维,全天候,速度和速度和时间同步。全球导航卫星系统练习的最终产品是接收站的三维坐标(3D)。这些坐标在大多数地理空间应用中被发现可靠。但是,除了大地坐标外,数据管理中的某些应用还需要其他信息。因此; GNSS已与其他数据获取方法集成在一起,以提高各种应用程序的数据质量。这些有助于解决各个方法失败的许多问题。本文研究了一些基于卫星的系统,并报告了GNSS与其他数据采集工具的集成,例如地球级别,遥感,地理信息系统(GIS),惯性导航系统(INS)等。在某些情况下,协同作用导致了其他卫星或有效载荷计划,例如重力恢复和气候实验(GRACE),而它已改善了许多领域的GNSS应用程序。GNSS集成。
10 差旅费 ICG 将向符合条件的国际参与者提供有限的差旅费资助。尼泊尔的参与者不提供国内旅行的差旅费资助。该资助仅涵盖参与者最近的国际机场和加德满都特里布万国际机场之间的往返经济舱机票。所有其他费用(酒店、保险和日常餐饮费用等)必须由参与者支付。当地组织者将提供与签证、酒店预订和其他交通相关事宜相关的后勤支持。但是,所有费用均由参与者承担。
建议 6/8 — 规划缓解全球导航卫星系统的脆弱性 各国:a) 评估其空域内全球导航卫星系统脆弱性的可能性和影响,并在必要时采用公认和可用的缓解方法;b) 对全球导航卫星系统(GNSS)频率进行有效的频谱管理和保护,以减少无意干扰或降低 GNSS 性能的可能性;c) 向国际民航组织报告可能对国际民用航空运行产生影响的全球导航卫星系统有害干扰案件;d) 建立并执行强有力的监管框架,管理全球导航卫星系统中继器、伪卫星、欺骗器和干扰器的使用;e) 允许充分利用机载缓解技术,特别是惯性导航系统; f) 当确定需要地面辅助设备作为缓解策略的一部分时,优先保留测距设备(DME)以支持惯性导航系统(INS)/DME 或 DME/DME 区域导航,以及在选定跑道上保留仪表着陆系统。3
CSNC 中国卫星导航大会 EGNOS 欧洲地球静止导航叠加服务 EIAST 阿联酋先进科学技术研究所 ESA 欧洲航天局 ESPI 欧洲空间政策研究所 EUPOS 欧洲定位系统 EUREF 欧洲参考框架分委员会 FAI 世界航空运动联合会 FCC 美国联邦通信委员会 FIG 国际测量师联合会 GAGAN GPS 辅助 GEO 增强导航系统 Galileo 欧洲全球导航卫星系统 GEO 地球同步轨道 GLONASS 全球导航卫星系统 GNSS 全球导航卫星系统 GPS 全球定位系统 ETRS 欧洲地球参考系统 IADC 机构间空间碎片协调委员会 IAG 国际大地测量学协会 IAIN 国际导航学会协会 ICA 国际制图协会 ICAO 国际民用航空组织 ICG 全球导航卫星系统国际委员会 IDM 干扰检测与缓解 IERS 国际地球自转与参考系统服务 IGMA 国际 GNSS 监测与评估 iGMAS 国际 GNSS 监测与评估服务 IGS 国际 GNSS 服务
项目一览 全球导航卫星系统 (GNSS) 技术如今已在日常生活中无处不在:它们被集成到电子设备中,并被公众、测量员和地球科学家定期使用。特别是在发展中国家,GNSS 应用提供了具有成本效益的解决方案,使其能够促进经济和社会发展,同时又不忽视保护环境的需要,从而促进可持续发展。 当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗导航卫星系统 (BDS) 和欧洲卫星导航系统 (Galileo)。还有两个区域系统,即印度星座导航系统 (NavIC) 和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。 除了 GNSS,其他空间技术(如地球观测 (EO) 卫星或通信卫星)在创造社会经济效益方面发挥着关键作用。地球观测卫星能够持续、详细地监测地球表面,为环境保护、资源管理和灾害应对提供宝贵数据。这些卫星有助于跟踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和减轻气候变化影响提供重要见解。另一方面,通信卫星促进全球连通性,通过向偏远和服务不足的地区提供互联网接入来弥合数字鸿沟,从而支持教育、远程医疗和经济发展。这些技术与全球导航卫星系统 (GNSS) 一起,构成了一套全面的工具包,以应对与可持续发展相关的各种挑战,确保以协调和有效的方式实现 2030 年可持续发展议程。为了解决广泛的全球导航卫星系统和相关技术应用以获得社会经济效益,并着重于启动试点项目和加强全球导航卫星系统相关机构的网络,将在线举办一次关于全球导航卫星系统和相关空间技术支持城市可持续发展挑战的研讨会。研讨会的主要目标是加强各国之间的信息交流,提高应用全球导航卫星系统和其他空间技术解决方案的能力;分享有关国家、地区和全球项目和举措的信息,使各地区受益;并加强这些项目和举措之间的相互影响。讲习班的具体目标是介绍基于 GNSS 的技术和其他空间技术,以支持城市可持续发展挑战;促进更多交流具体应用的实际经验;重点关注国家和/或区域层面的适当 GNSS 应用项目;并确定建议和调查结果,以作为对外层空间事务处和全球导航卫星系统国际委员会 (ICG) 的贡献,特别是在建立伙伴关系以加强和实现卫星导航科学和相关技术的能力建设方面。本次讲习班利用了题为“对“太空 2030”议程的贡献:欧盟空间支持 80 亿人口的世界”的报告中确定的挑战
国内航路和终端运行 ...................................................................................................................................................... 104 基于全球导航卫星系统 (GNSS) 的区域导航 (RNAV) 进近程序 ........................................................................................ 104 仅使用横向引导的区域导航 (RNAV) 进近 ......................................................................................................................... 105 全球导航卫星系统 (GNSS) 叠加进近 ............................................................................................................................. 105 区域导航 (RNAV) 进近的垂直引导 ............................................................................................................................. 105 基于气压垂直导航 (Baro-VNAV) 的垂直引导区域导航 (RNAV) 进近 ............................................................................................................................. 105 基于广域增强系统 (WAAS) 的垂直引导区域导航 (RNAV) 进近 ............................................................................................................................. 106 5.5.2 广域增强系统 (WAAS) NOTAM ............................................................................................................................. 107 负 W 符号 ......................................................................................................................................................................... 107 5.5.3 5.5.4 空间天气 ............................................................................................................................................................. 107 5.6 仪表飞行规则 (IFR) 飞行计划设备后缀 ............................................................................................................................. 108 5.7 航空电子数据库 ............................................................................................................................................................. 108 5.8 使用全球导航卫星系统 (GNSS) 代替地面辅助设备 ............................................................................................. 108