摘要 — 准确、稳健和可靠的定位和计时对于广泛的应用至关重要。新技术将进一步改善全球导航卫星系统 (GNSS) 所提供的服务。光学技术是有希望在不久的将来显著提高 GNSS 准确性、稳健性和可靠性的候选技术。首先,光学卫星间链路 (OISL) 和光学时钟技术在下一代 GNSS 架构的核心中显示出巨大的未来应用潜力。这两种技术可以在当前的 GNSS 中独立实施,因为发展路线可能不同,特别是在技术准备方面。我们将介绍光学关键技术如何潜在地集成到下一代 GNSS 中的不同途径,并评估相应的改进。
* 作者分别在南卫理公会大学和乔治城大学教授航空法和太空法四十余年。他是 PAUL B. LARSEN、JOSEPH C. SWEENEY 和 JOHN E. GILICK 合著的《航空法:案例、法律和相关资料》(第二版,2012 年)和 FRANCIS LYALL 和 PAUL B. LARSEN 合著的《太空法:论文集》(2009 年)。作者的联系方式为 pblspace@aol.com。我参阅《GNSS 在军事事务中的作用(反之亦然)》,INSIDE GNSS(2014 年 5 月/6 月),http://www.insidegnss.com/node/4018。 2 参见 NDP Consulting Grp.,《PNT 咨询委员会寻求 GPS 经济效益详情》,《INSIDE GNSS》(2012 年 8 月 20 日),http://www.insidegnss.com/node/3170 .html。 3 参见 id。军事用途是 GNSS 存在的最初且至今仍十分重要的政策原因。参见《GNSS 在军事事务中的作用》,上文注 1。与民用相比,军事用途较小。参见 NDP Consulting Grp.,上文注 2。Nev-
如今,全球卫星导航系统(GNSS)在许多领域都起着基本作用,例如民航,海上和土地导航和地理器,由于能够在全球范围内提供全球,三维,全天候,速度和速度和时间同步。全球导航卫星系统练习的最终产品是接收站的三维坐标(3D)。这些坐标在大多数地理空间应用中被发现可靠。但是,除了大地坐标外,数据管理中的某些应用还需要其他信息。因此; GNSS已与其他数据获取方法集成在一起,以提高各种应用程序的数据质量。这些有助于解决各个方法失败的许多问题。本文研究了一些基于卫星的系统,并报告了GNSS与其他数据采集工具的集成,例如地球级别,遥感,地理信息系统(GIS),惯性导航系统(INS)等。在某些情况下,协同作用导致了其他卫星或有效载荷计划,例如重力恢复和气候实验(GRACE),而它已改善了许多领域的GNSS应用程序。GNSS集成。
今年夏天,两家美国公司进行了处女航班,将其创始人带到80公里以上。这些第一个商业太空旅游的航班只是“报纸”的一个方面:越来越多的公司正在开发并合并新技术以利用太空的商业机会。有些人,例如西班牙的PLD,正在为较便宜的发射器(例如OneWeb)致力于部署大型卫星星座,而另一些则在小行星采矿等越来越有远见的应用程序上再次开发。这些举措并非没有需要解决的问题。如果空中交通对空气污染的贡献是一个问题,那么肯定是为了娱乐的轨道航班。大型卫星星座的发射正在将空前数量的对象插入轨道;这些不仅妨碍了天文观察,而且也极大地增加了现有卫星的碰撞风险。和空间采矿(仍然迄今仍胚胎)已经引发
6.飞行体验 ......................。。。。。。。。。。。。。。。。。。。。。。。。.....33 6.1 磁层多尺度 (MMS) 任务 (美国:NASA)。...........34 6.2 地球静止环境业务卫星 R (GOES-R) 系列 (美国:NOAA、NASA)。。。。。。。。。。。。。。。。。。。。。。。。。............36 6.3 国际空间站 (GARISS) 的 GPS 和伽利略接收机 (欧洲:ESA,美国:NASA) ..........。。。。。。。。。。。。。。。。。。。。。。。。。。。38 6.4 CARTOSAT-3(印度:ISRO)。。。。。。。。。。。。。。。。。。。。。。。。。。。...................40 6.5 Proba-3:高偏心轨道卫星精确编队飞行演示项目(欧洲:ESA)。..。。。。。。。。。。。。。。。。。。41
在未来 5 到 10 年内,世界将迎来真正的全球导航卫星系统 (GNSS) - 一个兼容且在许多方面可互操作的系统。美国全球定位系统、欧洲伽利略、或许还有俄罗斯的格洛纳斯系统以及包括广域增强系统 (WAAS)、欧洲地球静止导航覆盖服务 (EGNOS)、无线电信标系统(如美国全国差分 GPS)和兼容的商业差分校正服务在内的区域增强系统将组成这个多方面的 GNSS。通用信号结构和频率计划将使组合用户设备能够降低技术复杂性和成本,同时大大扩展相关应用。更强大且设计更完善的附加卫星和信号将增加室外稳健信号接收的可用性,并增强仅使用 GNSS 用户设备进行室内定位的潜力。但通往未来的道路并非没有风险:政治、技术、经济和文化风险。
摘要 未来几代全球导航卫星系统 (GNSS) 可受益于光学技术。特别是光学时钟可以备份或取代目前使用的微波时钟,由于其较低的频率不稳定性,有可能改善 GNSS 定位。此外,光学时钟技术与光学卫星间链路相结合,可实现新的 GNSS 架构,例如,通过使用时间和频率传输技术同步星座内的远距离光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来 GNSS 光学时钟的有希望的候选者。已经开发出紧凑而坚固的装置,显示在 1 秒到 10,000 秒之间的平均时间内频率不稳定性在 10-15 级别。我们介绍了用于未来 GNSS 的光学时钟技术,并介绍了我们基于碘的光学频率参考的当前开发状态。
全球导航卫星系统(GNSS)的摘要未来后代可以从光学技术中受益。尤其是光学时钟可以备份或替换当前使用的微波时钟,有可能改善通过其较低频率不稳定性来提高GNSS位置确定。此外,光学时钟技术(与光学卫星间链接结合使用),可启用新的GNSS体系结构,例如,通过使用时间和频率传输技术在星座内同步远处的光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来GNSS光学时钟的有前途的候选者。已开发了紧凑型和坚固的设置,显示了1 s至10,000 s的平均时间在10-15级的频率不稳定性。我们介绍了未来GNSS应用程序的光学时钟技术,并介绍了我们基于碘的光频率参考的开发的当前状态。
前言 《全球空中导航计划:通信、导航和监视/空中交通管理 (CNS/ATM) 系统》(Doc 9750 号文件)将全球导航卫星系统 (GNSS) 视为通信、导航和监视/空中交通管理 (CNS/ATM) 系统的关键要素,也是各国提供改进的航空导航服务的基础。全球导航卫星系统 (GNSS) 标准和建议措施 (SARP) 由全球导航卫星系统专家组制定,并于 2001 年作为《国际民用航空公约》附件 10 — 航空电信第 I 卷(无线电导航辅助设备)第 76 号修正案的一部分引入。附件 10 第 I 卷附文 D 中的指导信息和材料提供了有关 GNSS SARP 的技术方面和应用的广泛指导。本手册的主要目的是提供有关 GNSS 实施方面的信息,以协助各国引入 GNSS 操作。因此,本手册面向负责部署和操作 GNSS 元素的空中导航服务提供商,以及负责批准使用 GNSS 进行飞行操作的监管机构。此外,它还向飞机运营商和制造商提供 GNSS 信息。本手册应与附件 10 第 I 卷中的相关规定结合使用。欢迎所有参与 GNSS 开发和实施的各方对本手册提出意见。这些意见应寄送至: 国际民用航空组织秘书长 999 University Street Montréal, Quebec H3C 5H7 加拿大