在这里,我们使用狂犬病追踪和光片显微镜揭示了对大脑区域的客观看法,这些区域为内侧杏仁核中表达芳香化酶的细胞提供特定输入,这些神经元在产生性别特异性社会行为方面发挥着巨大作用。虽然这些细胞的下游投射是已知的,但对内侧杏仁核中表达芳香化酶的细胞的特定输入仍然未知。我们观察到与内侧杏仁核(例如,终纹床核和副嗅球)的已建立连接,这表明芳香化酶神经元是传出输入的主要靶细胞类型,包括来自与养育和攻击相关的区域。我们还从涉及新陈代谢、恐惧和焦虑以及记忆和认知的区域发现了新的和意想不到的输入。这些结果证实了内侧杏仁核在性别特异性社会 14 识别和社会行为中的核心作用,并指出其芳香化酶表达神经元在 15 多种感觉和稳态因素的整合中发挥着更广泛的作用,这些因素可能用于调节许多其他 16 社会行为。 17
表 1 两种受试者间标记方法之间的可重复性值。左列标明方法(匈牙利或 QB)、半球(左或右)和阈值(12 毫米、18 毫米或 21 毫米)。第二列列出了 20 个最可重复的束中束的最大受试者数量。第三列和第四列分别显示可重复性大于或等于 50% 和 75% 的束的数量。
LONGITUDINAL WHOLE-BRAIN FUNCTIONAL NETWORK CHANGE PATTERNS OVER A TWO-YEAR PERIOD IN THE ABCD DATA Rekha Saha, Debbrata K. Saha, Md Abdur Rahaman, Zening Fu, Vince D. Calhoun Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303抽象功能网络连接(FNC)是评估大脑网络之间时间依赖性的有用度量。内在功能的纵向变化引起了极大的兴趣,但是迄今为止,几乎没有关注FNC变化随发展的多元模式。在本文中,我们提出了一种新型方法,该方法使用FNC矩阵来估计多重重叠的脑功能变化模式(FCP)。我们将这种方法应用于大规模的青少年大脑和认知发展(ABCD)数据。结果揭示了几个高度结构化的FCP,显示了两年内的重大变化,包括视觉(VS)和感觉运动(SM)域之间的大脑功能连接性。这种FNC表达的模式随着年龄的增长而变得更强。我们还发现了男性和女性之间的变化差异模式。我们的方法提供了一种评估纵向数据中整个大脑功能变化的有力方法。
致谢 ............................................................................................................................. 67
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
bitBiome Inc. 电子邮件:service@bitbiome.co.jp 网站:https://www.bitbiome.co.jp/ 日本东京新宿区早稻田鹤卷町 513 号 162-0041 早稻田大学第 121 栋 415 室
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
