摘要:全色盲是一种常染色体隐性遗传病,患者视锥细胞会逐渐退化,导致色盲和视力下降,以及其他严重的眼部病变。它属于一类遗传性视网膜营养不良症,目前尚无治疗方法。尽管一些正在进行的基因治疗研究报告了功能改善,但仍应开展更多努力和研究以增强其临床应用。近年来,基因组编辑已成为个性化医疗最有前途的工具之一。在本研究中,我们旨在通过 CRISPR/Cas9 和 TALENs 技术纠正全色盲患者 hiPSC 中的纯合 PDE6C 致病变异。在这里,我们展示了 CRISPR/Cas9 的高基因编辑效率,但 TALENs 近似值不高。尽管少数经过编辑的克隆表现出杂合的靶向缺陷,但具有潜在恢复的野生型 PDE6C 蛋白的校正克隆的比例占所分析克隆总数的一半以上。此外,它们中没有一个出现脱靶畸变。这些结果对单核苷酸基因编辑的进展和未来治疗全色盲的策略的发展做出了重大贡献。
通过在所有位点(A、B 和 X)进行阴离子/阳离子工程可调节性质,使该类材料对下一代器件具有吸引力。据报道,VOP 有许多不同的离子组合,其中 i)A 位主要含有 Cs + 、Rb + 、K + 或铵有机阳离子,ii)B 位含有 Sn 4 + 、Ti 4 + 、Zr 4 + 、Te 4 + 、Sb 4 + 、Pt 4 + 、Ru 4 + 或 Pd 4 + 以及 iii) X 位含有 Cl − 、Br − 或 I −。[11,15–19] 值得注意的是,只有 Pt 4 + 和 Pd 4 + 样品在水介质中是稳定的。[11,12,15] 但是,可以利用在这些化合物中采用的策略来调节所需的性质。在钛基钙钛矿 Cs 2 TiI x Br 6-x 中,通过将 x 值从 0 变为 6 来系统地调整混合卤化物材料,可使光学带隙从 1.38 eV 变为 1.78 eV。[18] 类似地,在钯基纳米粒子钙钛矿中,随着卤素从溴化物变为碘化物,带隙变窄,这些材料已成功用于光催化。[20] 在我们最近的一项工作中,提出了阴离子交换法来创建核壳异质结构,其中核和壳具有不同的卤素。[15] 这些结构已被证明可以增强光生载流子分离。同样,Cs 2 Sn 1 − x Te x I 6 中的 Sn/Te 比已被证明会影响电导率、载流子迁移率和载流子浓度。 [21] Cs 2 SbBr 6 中混合价数(III 和 V)的存在为调整光电性能提供了另一个机会。[22] 用 Te 4 + 取代 Cs 2 ZrCl 6 已显示出光致发光量子产率的显著提高。[23,24] 类似地,据报道混合 Sn/Pt 空位有序钙钛矿的发射性能有所增强。[25] 在大多数已报道的钙钛矿中,
摘要:可见全色 (PAN) 和高光谱 (HS) 光谱范围之间差异较大,限制了反射域中的高光谱全色锐化方法,这显著导致 SWIR(1.0–2.5 µ m)光谱域的表示效果不佳。本研究提出了一种新颖的仪器概念,即在 SWIR II(2.0–2.5 µ m)光谱域中引入第二个 PAN 通道。提出了两种扩展融合方法来处理两个 PAN 通道,即 Gain-2P 和 CONDOR-2P:第一种方法是 Brovey 变换的扩展版本,而第二种方法在 Gain-2P 中添加了混合像素预处理步骤。通过遵循详尽的性能评估协议(包括全局、精细和局部数值分析以及监督分类),我们在近郊和城市数据集上评估了更新的方法。结果证实了第二个 PAN 通道的显著贡献(两个数据集的平均归一化间隙在反射域中提高了 45%,仅在 SWIR 域中提高了 60%),并揭示了 CONDOR-2P(与 Gain-2P 相比)在近郊数据集方面的明显优势。