从庞大且可能异构的影像数据集中提取感兴趣的特征是许多终端用户面临的一项关键任务。从大范围环境监测到太空商业勘探,再到现代制图,工人和研究人员可以使用在一系列光谱带中运行的高性能收集平台。随着新的分发技术和数据格式使这些数据的传播越来越便宜和容易,成功利用这些信息的瓶颈比以往任何时候都更多地取决于是否有合适的分析工具。开发这些工具是一项昂贵的业务,通常需要高技能分析师投入大量时间。国家和商业压力为开发用于传统数据格式(例如,光电影像、全色和/或可见/红外)的成熟工具提供了必要的动力,用于被认为重要的特定任务,但可能会出现新情况,现有工具可能是专有的或保密的。分析工具的通用性本身就是一个重要问题。成熟的工具经常表现出很强的专业化。此外,随着 LANDSAT 和 SPOT 等多光谱传感器平台的出现,分析师现在可以搜索光谱、空间以及可能的混合空间光谱特征,这需要开发全新的工具包。我们在遥感领域的工作促使我们寻求
使用高分辨率多光谱卫星图像检测海岸线 Valerio BAIOCCHI、Raffaella BRIGANTE、Donatella DOMINICI、Fabio RADICIONI、意大利 关键词:WorldView-2、阿布鲁佐、多光谱分类、海岸线 摘要 在过去的 50 年里,阿布鲁佐海岸沿线 19 个市镇的居民数量翻了一番,旅游相关活动对他们的影响也越来越大。该地区自然受到海平面变化的影响,由于在流域进行了大量工作以减轻极端降雨和随之而来的洪水,导致从河流到海洋的固体输送减少,侵蚀现象急剧增加。过去几十年来,不同传感器获取的数据可能有助于评估海岸线的整体增生/侵蚀趋势,而有限时间范围内进行的不同观测的组合可能为详细研究提供有趣的输入(例如关于海岸线保护工程对当地的影响)。本文提出了一种从 WorldView-2 图像中识别海岸线的方法,该图像有 8 个光谱波段,全色图像的空间分辨率为 0.5 米,多光谱通道的空间分辨率为 1.8 米。特别是,基于像素的多光谱分类用于识别各种类型的土地覆盖。这 8 个波段可以在分类过程中获得良好的结果
本章介绍了视网膜扫描显示器在头盔式飞行员-车辆接口以及面板式 HUD 和 HDD 应用中的性能、安全性和实用性。由于 RSD 组件技术发展如此迅速,因此参考了定量分析和设计方面,以便更完整地描述为直升机开发的第一个高性能 RSD 系统。视觉显示器在封装光线以形成图像的方式上存在显著差异。视网膜扫描显示器(图 6.1 中所示的 RSD)是一种相对较新的光机电设备,最初基于红、绿和蓝衍射极限激光光源。激光束通过视频信息进行强度调制,光学组合成单个全色像素束,然后由由微型振荡镜组成的 ROSE 扫描成光栅图案,就像阴极射线管 (CRT) 的偏转线圈将电子束写入荧光屏一样。 RSD 与 CRT 不同,因为电子到光子的转换发生在光束扫描之前,因此完全消除了荧光屏及其再辐射、光晕、饱和度和其他亮度和对比度限制因素。这意味着 RSD 与其他现有显示技术有着根本的不同,因为 RSD 没有平面发射或反射表面 — ROSE 直接创建光学瞳孔。与 CRT 一样,RSD 可以扫描出斑点
本研究调查了使用 SPOT 6 卫星图像自动提取建筑物。所提出的方法使用从 1.5 米全色图像获得的方差纹理信息来检测建筑物区域和非建筑物区域。一旦检测到,就对建筑物类别进行详细分割以创建单个建筑物对象。使用阈值技术,利用 Canny 边缘、SAVI 和对象的光谱特性将建筑物结构与其他土地使用特征进行分类。该方法在不同区域进行了测试,包括正式、乡村、非正式和新开发定居点类型,而无需修改分割和分类参数。所提出的方法成功地在所有不同类型的定居点中检测到建筑物和非建筑物区域。在正式、乡村和新开发区域中,单个结构的检测率超过 70%,而在非正式定居点中检测到的建筑物结构不到 50%。所提出的方法有助于监测更大区域的人类定居点发展,这对于空间规划、服务提供和环境管理至关重要。这项工作将有助于开发由 SANSA 开发和维护的国家人类定居点层。关键词:SPOT 6、建筑结构、纹理、人类居住地
1 日本遥感技术中心,东急 REIT 虎之门大厦 3F,日本东京都港区 3-17-1 – (takaku, fumi_og, dotsu_masanori)@restec.or.jp 2 日本宇宙航空研究开发机构地球观测研究中心,日本茨城县筑波市浅间 2-1-1 – tadono.takeo@jaxa.jp 委员会 IV,工作组 IV/3 关键词:三线、立体、卫星、光学、高分辨率、DEM/DTM 摘要:2016 年,我们首次使用来自先进陆地观测卫星 (ALOS) 上的立体测绘全色遥感仪 (PRISM) 的立体影像整个档案完成了数字表面模型 (DSM) 的全球数据处理。该数据集以 30 米网格间距免费向公众发布,名为“ALOS World 3D - 30m (AW3D30)”,该数据集由其原始版本生成,该版本以 5 米或 2.5 米网格间距处理。此后,该数据集已更新,通过额外的校准提高了绝对/相对高度精度。但是,应应用最重要的更新来提高数据可用性,即填充空白区域,这相当于约全球覆盖率的 10%,主要是由于云层覆盖。本文介绍了 AW3D30 的更新,通过与其他开放获取 DSM(如航天飞机雷达地形测绘任务 (SRTM) 数字高程模型 (DEM)、先进星载热辐射和反射辐射计全球 DEM (ASTER GDEM)、ArcticDEM 等)之间的相互比较,填补了这些数据集的空白。
这项倡议由 W. Schermerhorn 发起,并得到了 CH Edelman 的大力支持。Schermerhorn 利用他在测地学和摄影测量学方面的国际声誉和名望,将 ITC 打造成了该领域的国际专业中心。Edelman 凭借其国际声誉,在 ITC 引入了土壤调查、地质学、地貌学和林业领域的航空照片解译技术。Edelman 的地文方法将景观特征与土壤条件联系起来,为全色黑白航空照片的立体解译奠定了基础。在他的推荐下,P. Buringh 被任命为 ITC 第一位土壤科学家,出版并教授土壤调查和土地分类中航空照片解译的系统方法。 Buringh 方法的关键要素包括:1. 使用垂直航空照片和照片马赛克作为实地工作的基本地图;2. 将土壤学照片分析与实地工作相结合,以更高的精度识别土壤边界和土壤制图单元,从而实现土壤和土地分类,其用途广泛,包括土地覆盖和土壤侵蚀研究以及公路工程应用;3. 由经验丰富的土壤测量员在实地工作之前进行土壤学航空照片分析:这是一种在人口稀少、难以进入的地区识别潜在区域的经济有效的方法,可用于更详细的实地和实验室研究。
ILFORD GALERIE RC DIGITAL SILVER 是一种优质黑白全色相纸,具有中性图像颜色。它涂在亮白色、中等重量(190g/m²)、防水、树脂涂层基片上。GALERIE RC DIGITAL SILVER 采用最新的黑白卤化银乳剂技术设计而成。它具有光谱灵敏度和曝光特性,特别适合由 Durst、Océ、Pollielettronica、Fuji 等公司生产的三色激光放大机或 LED 系统的光学数字曝光系统。GALERIE RC DIGITAL SILVER 具有出色的对比度、清晰度和表面光洁度,可以从黑白或彩色胶片负片或正片、印刷品和数字原件制作的数字文件中产生出色的连续色调黑白图像或文本。其结果与使用传统黑白印刷材料和曝光设备时看到的结果相同。 GALERIE RC DIGITAL SILVER 提供 ILFORD Pearl 44M 和 Glossy 1M 表面处理,可作为壁画卷格式,宽度可达 127 厘米(50 英寸),长度可达 30 米(98 英尺)。ILFOSPEED RC DIGITAL 的改进 GALERIE RC DIGITAL SILVER 是 ILFORD ILFOSPEED RC DIGITAL 的升级版,采用完全重新设计的乳剂。新乳剂比之前的产品有显著的改进。即:–
摘要 采用遥感、地理信息系统 (GIS) 和更传统的实地工作技术相结合的方法来评估厄立特里亚中部高地的地下水潜力。对 Landsat TM 和 Spot 的数字增强彩色合成图和全色图像进行解释,以生成岩性和线性构造等专题地图。评估了先进星载热辐射和反射辐射计 (ASTER) 数据用于岩性和线性构造测绘的潜力。从数字高程模型中得出地表曲率、坡度和排水系统等地形参数,并用于绘制地形图。比较了从等高线中得出的数字高程模型 (DEM) 和在航天飞机雷达地形任务 (SRTM) 中获取的数字高程模型 (DEM) 在位置、排水网络和线性构造提取方面的关系。在不同岩石类型中现场测量了裂缝模式和间距,并与线性构造进行了比较。访问了选定的泉水和水井,以研究它们的地形和水文地质环境。收集了井日志、抽水试验、旱季和雨季的地下水位深度以及井的位置。所有专题图层(包括水文地质数据)都整合到地理信息系统中并进行分析。生成地下水潜力图并与产量数据进行了比较。根据大型挖井的水位波动和氯化物质量平衡法估算地下水补给量。P
由于遥感领域提供了新的传感器和技术来积累城市区域的数据,这些区域的三维表示在各种应用中引起了很大的兴趣。三维城市区域表示可用于详细的城市监测、变化和损坏检测目的。为了获得三维表示,最简单和最便宜的方法之一是使用数字高程模型 (DEM),它是使用立体视觉技术从非常高分辨率的立体卫星图像生成的。不幸的是,在应用 DEM 生成过程后,我们无法直接获得三维城市区域表示。在仅使用一个立体图像对生成的 DEM 中,通常噪声、匹配误差和建筑物墙壁位置的不确定性非常高。这些不良影响增加了三维表示的复杂性。因此,自动 DEM 增强是一个开放且具有挑战性的问题。为了增强 DEM,我们在此提出了一种基于建筑物形状检测的方法。我们使用慕尼黑的 DEM 和正射全色 Ikonos 图像来解释我们的方法。在对 DEM 和 Ikonos 图像进行预处理后,我们对 DEM 应用局部阈值来检测建筑物等高城市物体的大致位置。为了检测复杂的建筑物形状,我们开发了之前的矩形形状检测(箱体拟合)算法。不幸的是,我们研究区域中的建筑物形状非常复杂。我们假设可以通过像链条一样拟合小矩形来检测这些复杂建筑物的形状。因此,我们将检测到的建筑物分成细长的子部分。然后,我们将之前的矩形形状检测算法应用于这些子部分。在形状检测中,我们考虑 Ikonos 图像的 Canny 边缘以适应矩形框。合并所有检测到的矩形后,我们可以检测甚至非常复杂的建筑结构的形状。最后,使用检测到的建筑物形状,我们在 DEM 中细化建筑物边缘并平滑建筑物屋顶上的噪声。我们相信实施的增强功能不仅可以提供更好的视觉三维城市区域表示,而且还将导致详细的变化和损坏调查。
就像一张纸一样,电子纸可以用在照明中。除了节能之外,电子纸还具有提供无眩光表面的额外好处,即使在阳光下也能提高可视性(相比之下,目前的发射显示器在阳光充足的情况下很难看清)。[1,2] 基于液晶或电泳显示器等的黑白电子纸已经是流行的消费产品。然而,开发高性能彩色电子纸更具挑战性。特别是,仅基于环境光的图像生成会限制最大亮度。因此,仅仅优化色彩质量(色度)是不够的,高性能电子纸还需要高的绝对反射率。[3] 最近的研究探索了各种方法来创建高反射表面,这些方法基于薄膜腔的结构着色[4–9]、等离子体[10–15]或电介质超表面。 [16–18] 这些系统进一步与液晶、相变或电致变色材料等功能材料相结合,以打开/关闭此类反射表面。[19–23] 但是,即使单个区域可以提供 100% 的峰值反射率,使用彼此相邻的传统 RGB 子像素创建彩色图像也会将最大反射率降低到最多 33%,因为每种颜色最多只能占据总面积的三分之一。为了解决这个问题,我们需要开发具有可调颜色的反射像素(单像素),而不是依赖具有固定颜色的相邻像素。已经探索了各种方法来动态调整光腔和超表面的共振和颜色,[1,19,22,24–27] 其中一些通过电刺激来调节反射的结构颜色。[25,28,29] 其中包括使用具有电致变色特性的材料来调节纳米光腔和等离子体装置。 [3,30–32] 例如,Peng 等人利用聚苯胺的电化学可调折射率 (RI) 来控制聚合物涂覆的等离子体金纳米粒子和金属表面之间形成的间隙等离子体。 [33] 此类系统中的色域和色度通常受到限制,部分原因是 RI 可调性有限,以及电致变色材料的相对吸收性。最近,氧化钨 (WO3) 等无机电致变色材料也被提议用于光学腔的颜色调谐。 [3,34,35] 然而,任何单个 WO3 腔结构的调谐都无法覆盖整个可见光范围,[3] 这主要是因为无机电致变色材料没有提供足够的 RI 变化,并且在离子插入时也不会改变其厚度。为了实现全色调谐,使用