作者的完整清单:麦卡锡,艾莉森; SUNY Stony Brook,Karthik材料科学和化学工程Mayilvahanan; Mikaela哥伦比亚大学Dunkin;斯托尼·布鲁克大学国王,史蒂文;加尔文的斯托尼·布鲁克大学quilty;丽莎化学库尔赫尔·布鲁克大学(Stony Brook University);斯托尼·布鲁克大学Kuang,杰森;肯尼斯的Stony Brook University Takeuchi;斯托尼·布鲁克大学(Stony Brook University),化学Takeuchi,以斯帖(Esther);艾伦(Alan)西部布鲁克大学(Stony Brook University); Lei哥伦比亚大学王;布鲁克黑文国家实验室,能源和光子科学Marschilok,艾米;石溪大学
氮化铝(Algan)是紫外发光光子设备开发的一种材料。基于钒的金属堆栈是与N型Algan形成欧姆接触的流行方法。但是,这些金属堆栈必须退火至600°C以上的温度[6],以形成VN,在此期间,欧姆接触堆栈中的金属可以横向散布和短图案设备。这项研究的目的是确定将V/al/ni/au堆栈的横向扩散最小化的退火条件,并研究退火下的这些堆栈的行为。金属堆栈在8×8毫米硅(SI)块上图案化,并在不同的温度和时间上退火。退火条件的“安全区域”并未确定设备。通过C-TLM结构的扫描电子显微镜(SEM)图像确定扩散量。我们还观察到退火下的Ni的“弹力”可能是由于其高表面能。在以后的研究中,这种观察结果激发了将Ni切换为具有较低表面能量的金属。
钙离子电池 (CIB) 已成为电化学储能的一种有前途的替代品。高性能正极材料的缺乏严重限制了 CIB 的发展。钒氧化物作为 CIB 的正极材料特别有吸引力,预插层化学通常用于提高其储钙性能。然而,钒氧化物在有机电解质中的室温循环寿命仍然低于 1000 次循环。在此,基于预插层化学,通过集成电极和电解质工程进一步提高钒氧化物的循环寿命。利用定制的 Ca 电解质,构建的独立式 (NH 4 ) 2 V 6 O 16 · 1.35H 2 O@氧化石墨烯@碳纳米管 (NHVO-H@GO@CNT) 复合正极实现了 305 mAh g −1 的高容量和 10 000 次循环的创纪录长寿命。此外,首次组装了钙离子混合电容器全电池,容量达到62.8 mAh g − 1 。揭示了基于两相反应的NHVO-H@GO@CNT的钙存储机制以及循环过程中NH 4 +和Ca 2 +的交换。观察到V ─ O层的晶格自调节,通过离子交换形成的具有Ca 2 +柱的层状钒氧化物表现出更高的容量。这项工作通过电极的综合结构设计和电解质改性提供了增强钒氧化物钙存储性能的新策略。
离子电池(VALB) VALB 具有出色的电化学性能,平均工作电压为 1.4V。它具有 84 Whkg- 的极高密度。该电池具有出色的循环稳定性,在 100 mAg 的电流密度下经过 1000 次循环后容量保持率为 84,因此电池具有较长的使用寿命。全钒水系锂离子电池可以在 20-800°c 的更宽温度范围内工作 [9]。2. 结论发现氧化还原液流电池是最适合储能的电池。三种类型的氧化还原液流电池是(1)全液相电池。 (2)全固相电池和(3)混合氧化还原液流电池。比较这三种类型的电池,所有类型的电池都面临一些挑战,其中混合氧化还原液流电池被发现是储能最组成和最可靠的电池。最近开发的电池全钒水系锂离子电池(VALB)具有 84 WhKg- 的极高密度和长使用寿命。为了提高液流电池的性能,电极、离子交换膜、电池和电解质是液流电池发展的关键。参考文献 [1] Kyle Lourenssen, James Williams, Faraz Ahmadpour,
我们知道,即使是冷冻蔬菜也是叶酸和维生素 C 的丰富来源 - 但您是否知道土豆通常为人们的饮食提供非常大量的维生素 C?黑醋栗和黑莓是维生素 C、纤维和植物营养素的丰富来源,甚至果酱中也是如此!各种酱汁和果汁中的西红柿提供维生素 C 和番茄红素,冷冻豌豆提供叶酸、维生素 C 和纤维,洋葱和大蒜可增强人体抵抗感冒的能力,生姜也是如此。辣椒和胡椒再次保护我们,是维生素的丰富来源。储藏柜餐应该仍然包含大量这些丰富的免疫系统增强剂,甚至可以补充荨麻汤,以及花园野外的其他美味佳肴(注意准确识别,但可以尝试亚历山大、便士馅饼(Pennywort)和焯过的蒲公英叶!)。种植芝麻菜是孩子们的一项很棒的活动,可以保证快速补充维生素 C、叶酸和富含铁的食物。请记住,咖喱中加入姜黄、黑胡椒、孜然(只需使用咖喱酱)是另一种增强免疫系统的好方法,还能改善情绪!
挑战:VRFB 的运行效率不仅取决于其电气状态,还取决于其热状态。VRFB 独特的双重用途创造了一个新的三维优化问题陈述,其中 EMS 必须在操作量中找到最佳操作点,其中混合存储系统不仅在电气方面进行了优化,而且 VRFB 也在热方面进行了优化,如上图所示。
图5不同影响指标的排放百分比分解。排放是基于摇篮到宽度的方法。Impact categories: AP (acidification potential), EP (eutrophication potential), PO (photochemical oxidation), ADP (abiotic resource depletion potential), GWP (global warming potential), ODP (stratospheric ozone depletion potential), TAETP (terrestrial ecotoxicity potential), FAETP (freshwater aquatic ecotoxicity potential), HTP (human toxicity潜力),MAETP(海洋水生生态毒性潜力)。图5的基础数据在支持信息S2
矿业和勘探公司协会 (AMEC) 欢迎西澳大利亚州钒产业进一步发展,此前西澳工党在今天做出了选举承诺。过去三年来,AMEC 一直与政府和钒产业成员密切合作,寻找支持这一新兴市场的方法。如果再次当选,将为卡尔古利建造一座耗资 1.5 亿美元的 50 兆瓦钒电池。“对钒产业的支持巩固了 AMEC 和我们的成员多年来的工作,教育和吸引利益相关者了解钒的好处。”“该项目将创造约 150 个就业岗位,这种规模的钒液流电池为在西澳的能源结构中添加更多电池提供了良好的入门级。”该电池将提供 10 小时的备用电力存储,为 Goldfields 的能源系统提供另一层安全保障,同时加强该州的能源基础设施。van Drunen 先生补充道:“科学表明,钒液流电池可提供长时间的储能。将这些电池添加到我们的电网中只能帮助满足我们对能源的持续渴求。”“钒等关键矿物的作用将继续在能源转型中发挥重要作用。”西澳很幸运,拥有世界上最大的钒矿之一,位于米卡萨拉南部。预计到 2027 年将开始供应。世界上 85% 以上的钒供应来自俄罗斯、中国、南非和巴西。对于西澳政府、企业、利益相关者和投资者来说,继续支持这一新兴行业并加强我们的供应链至关重要。欲了解更多信息,请访问:澳大利亚首个电池项目将加强卡尔古利的能源系统欲了解更多信息或采访 Neil van Drunen,请联系:AMEC 全国媒体经理 Ryan Rampling - 0419 809 341