所有提交的论文必须是原始的,未发表的,并且在任何其他期刊或会议记录中都必须考虑出版。摘要不得超过250个单词,并且应包括4-5个关键字。纸必须以Microsoft Word格式提交。必须在新罗马字体的时间中格式化纸张,主文本为12号,标题14号和1线间距。的边距应在所有侧面设置为1英寸,并且文本应符合正义。表和图必须正确编号。全长纸不得超过7页。标题下方提供作者和合着者的姓名,机构名称和电子邮件地址。口头纸介绍将限制为10分钟:演示文稿7分钟和3分钟进行讨论。对于海报演示,海报的大小应为1m x 1m。有关接受摘要和论文的接受的通知将通过电子邮件发送。
我们展示了异源多倍体根结线虫Meloidogyne javanica的染色体级基因组组装。我们发现M . javanica基因组主要是异源多倍体,包含两个亚基因组A和B,最有可能起源于两个祖先亲本物种的杂交。使用全长非嵌合转录本、与参考数据库的比较和从头算预测技术对组装进行了注释,并使用祖先k聚体谱分析对亚基因组进行了分阶段。亚基因组B似乎显示染色体重叠群的分裂,虽然亚基因组之间存在大量同源性,但我们还确定了缺乏同源性的区域,这些区域可能在杂交之前或之后在祖先基因组中发生了分化。这种带注释和分阶段的基因组组装为了解这些全球重要植物病原体的起源和遗传学提供了重要资源。
引言SARS-COV-2导致全球大流行,截至2021年5月6日,超过153 954 491病例和3 221 052死亡。1几种疫苗的授权已遵循多次国际随机对照试验。截至2021年4月1日,在英国使用了两次针对SARS-COV-2的疫苗:一种基于mRNA的疫苗(BNT162B2; Tozinameran)由Pfizer Inc和Biontech SE和Biontech SE以及复制缺陷缺陷的替代型Adenovirus adenovirus adenovirus vector chadox1 ncov-19(Vaxefraze)(Vaxefraze)(Vaxzevria)(VASEFRAAKE)(VASEFRIA)(VASEFRAAKE)(VASEFRAAKE)(Vaxzevriak)(VASEFRAAKE)(VASEF)。均包含编码SARS-COV-2的全长结构表面糖蛋白(SPIKE蛋白)的核酸编码。两剂BNT162B2在第二剂剂量的SARS-COV-2感染后至少在参与者中至少有95%(95%CI 90-98)疗效,而没有先前的COVID-19。2在2021年初,研究人员报告了
促性腺激素释放激素 (GnRH1) 及其受体 (GnRHR1) 通过调节促性腺激素来驱动生殖。另一种形式 GnRH2 及其受体 (GnRHR2) 也存在于哺乳动物中。在人类中,存在 GnRH2 和 GnRHR2 基因,但 GnRHR2 基因中的编码错误预计会阻碍全长蛋白质的产生。尽管如此,越来越多的证据支持人类存在功能性 GnRHR2。GnRH2 及其受体已在整个身体中得到确认,包括卵巢、子宫、乳腺和前列腺等外周生殖组织。此外,GnRH2 及其受体已在人类大量生殖癌细胞中检测到。值得注意的是,GnRH2 类似物对各种生殖系统癌症(包括子宫内膜癌、乳腺癌、胎盘癌、卵巢癌和前列腺癌)具有强大的抗增殖、促凋亡和/或抗转移作用。因此,GnRH2 是治疗人类生殖系统癌症的新兴靶点。
尽管重组腺相关病毒(RAAV)是基因疗法的主要平台,但缺乏标准化的计算分析方法和通过长阅读测序评估每个帽子的内容的报告。PACBIO高度准确的长阅读HIFI测序可以对AAV基因组进行全面表征,但需要生物信息学专业知识来分析,解释和比较结果。为了满足这一需求并提高对功能性病毒有效载荷的理解,我们的工作组建立了标准化的命名法,并报告了RAAV矢量的长阅读测序数据。工作组建议涵盖与矢量纯度(全长与零散基因组)和污染物(宿主DNA,质粒DNA)鉴定有关的关键质量属性(CQA)。通过推荐的协议,我们对从头制造的数据分析揭示了全部和部分填充的衣壳的特异性以及部分/截断的载体物种的高分辨率表征。最后,我们提供了实施此
本文研究了使用大型语言模型(LLM)从全长材料科学研究论文中提取聚合物纳米复合材料(PNC)的样本清单。挑战在于PNC样品的复杂性质,这些属性具有散布在整个文本中的许多属性。关于PNCS的注释详细信息的复杂性限制了数据的可用性,从而使文档级别级别的关系提取技术不切实际,这是由于综合命名实体的挑战跨度跨度。为了解决这个问题,我们为此任务介绍了一种新的基准和评估技术,并以零拍的方式探索了不同的提示策略。我们还结合了提高性能的自我一致性。我们的发现表明,即使是先进的LLMS陷入困境,也可以从文章中提取所有样本。最后,我们分析了此过程中遇到的错误,将它们归类为三个主要挑战,并讨论了未来研究的潜在策略以克服它们。
在体外和原位结构表征中产生蛋白质淀粉样蛋白纤维的方法在生物学,医学和药理学中至关重要。,我们首先证明了超氧化物底物上的液滴作为反应器,可通过使用合并的浅层显微镜和热成像来实时监测生长过程,从而产生蛋白质淀粉样蛋白纤维。分子结构的特征是拉曼光谱,X射线衍射和X射线散射。我们证明了样品温度梯度引起的对流流是有序蛋白质纤维的生长的主要驱动力。特别注意PHF6肽和全长TAU441蛋白以形成淀粉样蛋白纤维。通过与分子动力学模拟的结合实验,表征了这些淀粉样蛋白纤维的构象多态性。该研究提供了一种可行的程序,以优化未来研究中其他类型蛋白质的淀粉样蛋白形成和特征。
大基因包括几个 CRISPR-Cas 模块,如基因激活剂 (CRISPRa),需要双腺相关病毒 (AAV) 载体才能有效地在体内传递和表达。当前的双 AAV 载体方法具有重要的局限性,例如重建效率低、产生外来蛋白质或分裂位点选择的灵活性低。在这里,我们介绍了一种基于通过 mRNA 反式剪接 (REVeRT) 重建的双 AAV 载体技术。REVeRT 在分裂位点选择方面具有灵活性,可以在多种体外模型、人类类器官和体内有效地重建不同的分裂基因。此外,REVeRT 可以通过单一或多重方法在不同的给药途径上功能性地重建针对各种小鼠组织和器官中基因的 CRISPRa 模块。最后,REVeRT 能够在 Stargardt 病小鼠模型中玻璃体内注射后重建全长 ABCA4。由于其灵活性和效率,REVeRT 在基础研究和临床应用方面具有巨大潜力。
在电影发展的早期,3D 动画是使用物理 3D 模型实现的,该模型通过手动调整来创建动画的每个单独帧。使用该技术的经典示例是电影《金刚》(1933 年),其中金刚的模型只有一英尺高。用这种技术制作的动画仍然很受欢迎,最近的一个例子是《超级无敌掌门狗》。动画的计算机支持系统开始出现在 20 世纪 70 年代末,第一部由计算机生成的全长 3D 动画电影是《玩具总动员》(1995 年)。尽管完全使用计算机制作,但《玩具总动员》和其他现代 3D 动画电影仍然耗费大量的人力。全自动动画还有很长的路要走,但计算机工具和支持工具已经迅速发展。这些免除了动画师大量繁琐的工作,并允许创建壮观的特效。基本方法是:(i) 物理模型; (ii)程序方法和(iii)关键帧。
coccomyxa属的单细胞绿藻以其全球分布和生态多功能性而被认可。迄今为止所描述的大多数物种与各种宿主物种密切相关,例如地衣关联。然而,对驱动这种共生生活方式的分子机制知之甚少。,我们为地衣coccomyxa viridis sag 216-4(相当于粘菌)生成了高质量的基因组组装。使用长阅读的PACBIO HIFI和牛津纳米孔技术与染色质构象捕获(HI-C)测序结合使用,我们将基因组组装成21个SCA效率,总长度为50.9 MB,N50的N50和2.7 MB的N50和BUSCO得分为98.6%。虽然19个sca o olds代表了全长的核染色体,但两个添加的sca o olds代表了线粒体和质体基因组。转录组引导的基因注释导致13,557个蛋白质编码基因鉴定,其中68%的PFAM结构域和962被预测被分泌。