这项调查Art -um -us提供了相对文献的曝光,并在人工智能(AI)的传送带系统中具有特定的重点。这项调查Art -um -um -ul -un -un -ul -us介绍了基于物联网,绩效分析,可视化和力邮寄的皮带状况及其预后。该评论基于该研究的最后五年发表的79条经过同行评审的期刊,重点介绍了使用DL模型应用高级AI技术的制造,采矿和物流行业的传送带系统的性能和安全性的增强。将要研究的AI技术是用于检测故障和预测故障的ML算法的专业,用于实时鉴定资产和IoT系统缺陷的CV系统用于数据集合和处理。从调查中可以看出,这些AI可能性的整合增强了准确的故障检测领域的能力;材料处理的卓越控制和基于计算机的智能操作比监视风扇输送机的方面。创新涉及一些包括以下内容的概念;皮带撕裂的预测模型使用神经网络的实时预测皮带撕裂,计算机视觉,对表面问题的实时识别的实时预测,可以将系统未计划的时间降低至少30%。它还描述了数据质量问题的当前状态,所使用算法的解释以及扩展已经存在的系统的过程。最后但并非最不重要的一点是,它为AI系统中的多个智能以及Edge AI智能决策,强化学习智能控制以及与其他新兴技术的AI提供了关键和精确的建议;数字双胞胎。最后,可以提到的是,关于进行调查,可以说明如何随着AI在各个领域的有效用途来更改传送带系统,以提高性能,可靠性和安全性。
化学和生物学系“ Adolfo Zambelli”,萨勒诺大学,通过Giovanni Paolo II,84084,意大利Fisciano,B卫生环境工程部(种子),萨勒诺大学土木工程系(种子),通过Giovanni Paolo II,84084 FISCONISTIS Paolo II,84084,意大利Fisciano,D膜与高级水技术中心(CMAT),化学与石油工程系,哈利法科学技术大学,P。O.box 127788,阿布扎比,阿拉伯联合酋长国e环境工程系萨克拉曼多S/N,04120 Almeria,西班牙
Ram Prabhoo博士和Nirbhay Shrivastava doi博士:https://doi.org/10.22271/ortho.2024.v10.i3b.3582摘要骨关节炎(OA)持续的退化和无效的条件,由综合问题与整合性问题分辨出来。NSAID和可用的COX-2抑制剂在不良反应方面显示出局限性。他们都有黑匣子警告,因为它们不是有氧,肾脏和GI安全的。polmacoxib是一种新型的非甾体类抗炎药(NSAID),是第一个组织选择性的,每天一次的骨关节炎药物,具有独特的作用方式,专门针对受影响的关节来缓解疼痛和恢复活动性。其独特的作用机制预计将提供对当前可用的NSAID选项的心血管,肾脏和胃肠道安全的有意义的增强。该药物的药理特征的特征是它通过CYP3A4途径抑制COX-2的能力。在这篇综述中,我们描述了polmacoxib在OA治疗中的临床功效,安全性和耐受性。关键字:管理,骨关节炎,撞击,扭伤,菌株,全面的审查介绍骨关节炎的概述最常见的原因患者拜访骨科医生通常是疼痛。常见的慢性骨科疾病可以包括关节炎,强直性脊椎病,骨质疏松症,囊炎,神经病和下腰痛。常见的急性骨科条件包括脱位,断裂或撞击,扭伤和菌株。骨关节炎(OA)是关节炎的一种普遍形式,是由影响整个滑膜关节的复杂问题区分的持续变性和无行为能力的疾病。这些问题涵盖了透明关节软骨中的结构不规则,完整的软骨下骨的恶化,组织肿大以及肌腱和韧带的不稳定性的血管增大以及肌肉不稳定性[1]。
汽车和NBRI在印度尼西亚印度尼西亚推出了最全面的电动电动电池测试实验室 - PT Carsurin TBK(Carsurin)和国家电池研究所(NBRI)宣布了在印度尼西亚最全面的电动汽车(EV)电池测试设施的开放式(J. INSONES IN IN IN IN IN IN IN IN IN IN IN印度尼西亚)在国际电池台上开放(IBS)2022222220222. IBS IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN INITIAN起点(IBS)。由印度尼西亚海事事务和投资协调部长Luhut Binsar Panjaitan和印度尼西亚共和国总裁Jenderal Tni(Purn)Moeldoko博士开设。IBS 2024在电动汽车供应链的每个链接中解决了战略问题,并审议了本地和国际解决方案。Carsurin和NBRI在2024年2月宣布了一项战略联盟协议,这不仅标志着实现印度尼西亚成为EV电池生产的全球中心的愿景迈出的一步,还代表了私营部门与研究机构之间的合作模型,以促进创新和可持续性。双方之间的合作协议建立了一个运营框架,以开发和实施印度尼西亚最先进,最全面的电动汽车电池测试设施。这项倡议代表了印度尼西亚在EV部门为可持续移动和技术领导力所努力的重要里程碑,符合最高的安全性,绩效和环境合规性。“建立电动汽车电池测试设施是我们迈向印度尼西亚绿色,更可持续的未来的重要步骤。与NBRI的联合实验室设施是Carsurin对卓越,创新和对我们环境福利的奉献精神的代表,” PT Carsurin TBK的首席执行官Sheila Tiwan说。Carsurin和NBRI带入市场的全面测试服务将有助于实现减少碳排放和增强国家能源安全的使命,同时还将印度尼西亚定位为全球电动汽车环境中的关键参与者。电动汽车电池测试设施将在各种方案和条件下为电动汽车电池组提供完整的实验室测试服务,与相关的全球标准一致,UN136。这包括液滴测试,机械冲击,振动,过度充电保护,过度电荷保护,热冲击和热循环,温度过度保护,外部短路保护和防火性。EV电池测试的初始阶段将优先考虑与印度尼西亚快速加速的电动汽车市场一致的两轮车运输模式。
背景:胰腺癌通常在晚期才被诊断出来,而早期诊断胰腺癌由于症状不典型且缺乏可用的生物标志物而十分困难。方法:我们对来自 14 家医院的 212 个胰腺癌患者样本和 213 个非癌性健康对照样本进行了全面的血清 miRNA 测序。我们将胰腺癌和对照样本随机分为两组:训练组 (N = 185) 和验证组 (N = 240)。我们创建了将自动机器学习与 100 种高表达 miRNA 及其与 CA19-9 的组合相结合的集成模型,并在独立验证组验证了模型的性能。结果:100 个高表达 miRNA 和 CA19-9 组合的诊断模型可以高精度区分胰腺癌和非癌症健康对照(曲线下面积 (AUC),0.99;灵敏度,90%;特异性,98%)。我们在独立的无症状早期(0-I 期)胰腺癌队列中验证了高诊断准确性(AUC:0.97;灵敏度,67%;特异性,98%)。结论:我们证明 100 个高表达 miRNA 及其与 CA19-9 的组合可以作为胰腺癌特异性和早期检测的生物标志物。
成纤维细胞生长因子(FGF)是一种主要由巨噬细胞产生的细胞信号蛋白。它们对于正常发育涉及的各种生物学活动至关重要。成纤维细胞生长因子23(FGF23)是FGF内分泌亚科的最新和最年轻的成员,以及成纤维细胞生长因子19(FGF19)和成纤维细胞生长因子21(FGF21)。在这项研究中,我们对所有已知文献进行了系统的综述,以确定心血管系统中FGF23升高的风险。分析包括升高FGF23的原发性和继发原因(例如慢性肾功能不全)的心血管疾病风险。此系统文献综述遵守首选的报告项目和荟萃分析(PRISMA)标准。在不同数据库中总共确定了4,793个记录。之后,检索并审查了273个记录。仔细检查了每个报告的标题和摘要后,消除了249个其他条目。主要和次要作者筛选了其余记录中的大约24项研究,并使用常见的质量检查工具进行了质量评估。最后,这项评论包括11项研究。经过彻底的分析,我们得出的结论是,FGF23可以被视为一种新型的生物标志物,应包括在已经鉴定出的心脏生物标志物中,例如B型NATRIARITE肽(BNP),以早期鉴定出多种高度流行的心血管疾病。
循环介导的等热扩增(LAMP)是一种新的以其等温特性,高效率,灵敏度和特异性而闻名的核酸检测方法。灯使用的4至6个引物针对所需序列的6至8个区域,从而在60至65°C之间的温度下进行扩增,并且在一个小时内最多生产10个9拷贝。可以通过各种方法(例如浊度法,荧光法和比色法)监测产品。然而,它面临着诸如非特异性扩增的风险,引物设计的挑战,对短基因序列的不适合性以及多重多路复用的困难。聚合酶和底漆设计的最新进展提高了灯反应的速度和便利性。此外,将灯与滚动圆扩增(RCA),重组酶聚合酶扩增(RPA)和CRISPR-CAS系统等技术相结合,提高了其效率。灯与各种生物传感器的组合启用了实时分析,扩大了其在护理测试(POCT)中的应用。微流体技术进一步促进了灯的自动化和小型化,从而可以同时检测多个靶标并防止污染。本评论重点介绍了LAMP的进步,重点是底漆设计,聚合酶工程及其与其他技术的集成。持续改进和将灯与互补技术的整合显着增强了其诊断能力,使其成为快速,敏感和特定的核酸检测的强大工具,并具有对医疗保健,农业和环境监测的有希望的影响。
全面的学校心理健康(CSMH)框架是一种综合方法,该方法融合了多层支持系统(MTSS),旨在提供社交,情感,行为和心理健康支持和服务的连续性,以支持学生,家庭,家庭,教育工作者以及学校社区中的所有利益相关者。
来自A Ko的C大学翻译医学研究中心(KUTTAM),_伊斯坦布尔,T€urkiye; B KOIT C大学健康科学研究生院C Hasselt大学,比利时Diepenbeek Reval Rehabilitation Research Center的康复科学学院; D伊斯坦布尔物理治疗系卫生科学大学,乌尔基耶; E Cairo University,物理治疗学院,肌肉骨骼及其手术的物理治疗系,埃及吉萨; f西奈大学,物理治疗学院,骨科和骨科手术的物理治疗系,埃及伊斯梅利亚; G大学Centrum Hasselt-Pelt,UMSC,比利时; H运动控制和神经塑性研究小组,生物医学科学,Ku Leuven,Tervuurse Vest 101,卢文3001,比利时; I Leuven Brain Institute,Ku Leuven-LBI,鲁汶,比利时;和J KO×C大学医学院神经病学系,_伊斯坦布尔,T€urkiye。