自从Bennett等人[1]首次提出量子隐形传态的概念以来,量子信息处理在近年来得到了很大的发展,随后量子信息传输引起了人们的浓厚兴趣,例如受控隐形传态[2]、量子克隆[3,4]、量子态共享[5,6]、量子安全直接通信[7,8]等。此外,Lo[9]和Pati[10]提出了一种新的方法,称为远程状态准备(RSP)。与量子隐形传态相比,RSP需要的经典通信代价和纠缠代价更小。由于这些独特的优势和特点,各种RSP协议在理论和实验上被广泛提出[11–24]。例如,Dai等人[12]提出了一种通过部分纠缠态远程准备两量子比特纠缠态的新方案。随后,Wang 等人 [ 14 ] 提出了一种通过两个部分纠缠的 Greenberger–Horne–Zeilinger 态 (GHZ) 远程制备四粒子团簇态的方案。最近,Wei 等人 [ 16 ] 介绍了一种远程制备任意
Owen T. Tuck, 1,2,10 Benjamin A. Adler, 2,3,10 Emily G. Armbruster, 4 Arushi Lahiri, 5 Jason J. Hu, 2,5 Julia Zhou, 5 Joe Pogliano, 4 和 Jennifer A. Doudna 1,2,3,5,6,7,8,9,11,* 1 加州大学伯克利分校化学系,美国加利福尼亚州伯克利市 94720 2 加州大学伯克利分校创新基因组学研究所,美国加利福尼亚州伯克利市 94720 3 加州大学伯克利分校加州定量生物科学研究所 (QB3),美国加利福尼亚州伯克利市 94720 4 加州大学圣地亚哥分校生物科学学院,美国加利福尼亚州拉霍亚市 92093 5 加州大学伯克利分校分子与细胞生物学系, CA 94720,美国 6 加州大学伯克利分校霍华德休斯医学研究所,美国加利福尼亚州伯克利市 94720,美国 7 劳伦斯伯克利国家实验室 MBIB 部门,美国加利福尼亚州伯克利市 94720,美国 8 加州大学旧金山分校格拉德斯通研究所,美国加利福尼亚州旧金山市 94720,美国 9 加州大学伯克利分校生物工程系,美国加利福尼亚州伯克利市 94720,美国 10 这些作者贡献相同 11 主要联系人 *通信地址:doudna@berkeley.edu https://doi.org/10.1016/j.cell.2024.09.020
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
非 MDE:此请求还包括以下非 MDE 物项:八 (8) 个 AN/APN-194(V) 雷达高度计、八 (8) 个 AN/APN-217A 多普勒雷达导航装置、八 (8) 个 AN/ARN-15l (V)2 全球定位系统、八 (8) 个 AN/APX- 100(V) 敌我识别 (IFF) 应答器组、八 (8) 个 OA-8697 A/ARD 测向组、八 (8) 个 AN/ARN- 118(V) 导航接收器、八 (8) 个 AN/ARN-146 顶部位置指示器、十六 (16) 个 IP-1544A/ASQ-200 水平情况视频显示器 (HSVD)、八 (8) 个 AN/ARC-174A (V)2 HF 无线电、十六 (16) AN/ARC182(V) UHF/UHF 无线电、八 (8) PIN 70600-81010-011 通信系统控制器、八 (8) 挺 GAU-16 50 口径机枪、八 (8) 挺 M- 60D/M-240 机枪、八 (8) 个内部辅助油箱、十六 (16) 个外部辅助油箱和八 (8) 个 C-11822/AWQ 控制器、武器系统。还包括备件和维修零件、支持和测试设备、通信设备、渡轮支持、出版物和技术文档、美国政府和承包商工程、技术和后勤支持服务,以及其他相关的后勤和计划支持要素。
摘要:我们通过实验演示了热电传感器与纳米天线的耦合,这是检测红外能量的另一种选择。我们制造并测试了两种基于 Yagi-Uda 技术的纳米天线设计(单元件和阵列)变体和一个单独的纳米热电结阵列。纳米天线经过调整,可在中心波长 1550 nm(193.5 THz)光学 C 波段窗口处运行和响应,但它们在受到各种波长(650 nm 和 940 nm)激光激发时也表现出共振响应。纳米天线中的辐射感应电流与纳米热电传感器耦合,根据塞贝克效应产生了电位差。相对于参考纳米天线的均匀热测量,实验证实了所提出的纳米天线的检测特性;单元件检测到峰值百分比电压升高 28%,而阵列检测到中心波长处的峰值百分比电压升高 80%。与最先进的热电设计相比,这是首次根据基于塞贝克原理的平面设计实验报告如此高的峰值百分比电压。
5 天前 — 零件编号或规格。设备名称。规格编号。到期日期等。组。交货地点。交货日期。[包装。41UD1A10183。0001。UN。16.00。Ichigaya。[应急广播设备用电池。1.八...
2024 年 9 月 2 日 - 零件编号或规格。所用设备的名称。4KZ01A15755.0001.规格编号。EA.5.00.一击加柳生草≥0.2。1.松吉株式会社产品编号:24-2670-00。4KZ01A15755.0002.2.
备忘录:CIR专家小组成员和联络人,来自:Priya Cherian,M.S。高级科学分析师/作家,CIR日期:2025年2月14日,主题:对封闭的化妆品中使用的八氧基诺酚的安全评估是对八氧基诺在化妆品中使用的安全评估的修订报告草案。(在PDF文档中,它被识别为report_octoxynols_032025)。The Panel first published a Final Report on these 25 ingredients in 2004, with the conclusion that based on the animal and clinical data included in the report, Octoxynol-9, -10, -11, -12, -13, -16, -20, -25, -30, -33, -40, and -70, Octoxynol-9 Carboxylic Acid, Octoxynol-20 Carboxylic Acid, Potassium八氧基醇12磷酸盐和八氧合钠9硫酸钠是安全的,如冲洗和外壳所用时所用。面板还得出结论,八氧基诺-1,-3,-5,-6,-7和-8,八氧合钠2乙烷磺酸钠,八氧基2硫酸钠2硫酸钠和甲氧基诺酚-6硫酸钠在Rinse -Off Off Octemety Products and Safe of Plusement and Safe Plusentation and Safe of consection和safe consection in consection和safe consection usection and Safe of consectics and safe of safe osscoctions; OriginalReport_octoxynols_032025)。在2023年6月的会议上,该小组决定重新开放此安全性评估,以探索这些成分的粘膜刺激潜力,并且由于新报告的其他婴儿产品中八氧基诺酚-9在0.1%中使用了0.1%(根据20222222年使用数据浓度)。在2023年12月,该小组审查了修订的报告草案,并确定评估评估,直到收到RLD对这些成分的收到。在2024年收集的RLD表明Octoxynol-9用于可能导致粘膜暴露的制剂中(例如,沐浴肥皂和沐浴露和一次性湿巾)。这些数据并不表示这些成分用于婴儿产品。同样根据RLD,Octoxynol-9是使用数量最高的成分(总计38种制剂)。根据2023 FDA VCRP数据,据报道Octoxynol-11是用途数量最多的成分(8种制剂)。根据2022年使用数据浓度,在面部和颈部制剂中,报告的使用浓度最高,导致皮肤上丢弃的真皮暴露量为1.5%八氧基诺12。许多已发表的文献都以“ Triton X-100”的名称确定。根据不同的来源,此名称对应于报告中综述的几种不同的八氧合基因成分(例如,八氧基1,八氧基诺9)。然而,在本报告的原始审查期间,人们认为Triton X-100仅提及八氧基诺9,因此,对于该报告,Triton X-100的数据在Octoxynol-9下包含。因此,由于小组审查了本报告上一次迭代的数据(如斜体化文本所示),他们应注意,列出为“八氧基诺酚-9”的数据可能指的是其他八氧合酚。此外,自报告的最后一次迭代以来发现的许多新数据都在Triton X-100上。这些研究包含在报告中,并以黄色突出显示。在整个报告中突出显示的其他文本包括2024年提交的RLD以及自小组上次在2023年12月看到该报告以来所做的任何更改。专家小组发表了关于1983年和2015年非氧基诺酚安全性的评论。按照上一篇评论的小组指示,这些数据已包括在内;但是,由于现在已经知道该成分可能是指多个八氧合酚,因此这些数据已在“八氧基醇(乙氧基重复单元数量未知)的子标题下合并到报告中。在皮肤,眼和粘膜测定中,使用Triton X-100作为模型刺激性/细胞毒性剂发现了几项研究。在对八氧基醇的最初安全评估中,面板依赖于非氧基醇的化学相似性(较长1个碳)来支持八氧基醇的安全性。因此,当缺少八氧醇的数据时,已经包括了诺氧基诺酚的数据,就像先前对八氧基醇的安全性评估中所做的那样; 2015年最终修订的非氧基诺酚(Nonoxynols2015_octoxynols_032025)的数据也已适用于潜在的Read-across源。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测