简介量子通信网络在量子通信领域提出了革命性步骤(1,2)。尽管实际证明了量子密钥分布(QKD)(3-8),但向许多用户扩展标准的两用户QKD协议的差异已经阻止了大规模采用量子通信。到目前为止,量子网络依赖于一个或多个概率特征:受信任的节点(9-13)是潜在的安全风险;主动切换(14 - 17),限制了功能和连接性;最近,波长多路复用(18)具有有限的可伸缩性。量子通信研究的最终目标是,具有基于物理定律而不是计算复杂性的安全性,使得与当前的Internet相像,以实现广泛的连接性。为了实现这一目标,量子网络必须是可扩展的,必须允许使用不同硬件的用户必须与流量管理技术兼容,不得限制允许的网络拓扑,并且必须尽可能避免避免潜在的安全风险(如受信任的节点)。到目前为止,所有人都证明了QKD网络属于三个宽大的冠军。第一类是值得信赖的节点网络(9-12),其中假定网络中的某些或所有节点被认为可以免受窃听。在大多数实用的网络中,很少能相信每个连接的节点。此外,此类网络倾向于在每个节点上同时使用发件人和接收器硬件的多个副本,从而使成本越来越高。第二类是积极切换或“访问网络”的,其中只允许某些用户一次交换密钥(19)。同样,点对点网络网络在利基应用程序中很有用,并且已使用无源束分式(BSS)(20 - 22),活动
自从Bennett等人[1]首次提出量子隐形传态的概念以来,量子信息处理在近年来得到了很大的发展,随后量子信息传输引起了人们的浓厚兴趣,例如受控隐形传态[2]、量子克隆[3,4]、量子态共享[5,6]、量子安全直接通信[7,8]等。此外,Lo[9]和Pati[10]提出了一种新的方法,称为远程状态准备(RSP)。与量子隐形传态相比,RSP需要的经典通信代价和纠缠代价更小。由于这些独特的优势和特点,各种RSP协议在理论和实验上被广泛提出[11–24]。例如,Dai等人[12]提出了一种通过部分纠缠态远程准备两量子比特纠缠态的新方案。随后,Wang 等人 [ 14 ] 提出了一种通过两个部分纠缠的 Greenberger–Horne–Zeilinger 态 (GHZ) 远程制备四粒子团簇态的方案。最近,Wei 等人 [ 16 ] 介绍了一种远程制备任意
Owen T. Tuck, 1,2,10 Benjamin A. Adler, 2,3,10 Emily G. Armbruster, 4 Arushi Lahiri, 5 Jason J. Hu, 2,5 Julia Zhou, 5 Joe Pogliano, 4 和 Jennifer A. Doudna 1,2,3,5,6,7,8,9,11,* 1 加州大学伯克利分校化学系,美国加利福尼亚州伯克利市 94720 2 加州大学伯克利分校创新基因组学研究所,美国加利福尼亚州伯克利市 94720 3 加州大学伯克利分校加州定量生物科学研究所 (QB3),美国加利福尼亚州伯克利市 94720 4 加州大学圣地亚哥分校生物科学学院,美国加利福尼亚州拉霍亚市 92093 5 加州大学伯克利分校分子与细胞生物学系, CA 94720,美国 6 加州大学伯克利分校霍华德休斯医学研究所,美国加利福尼亚州伯克利市 94720,美国 7 劳伦斯伯克利国家实验室 MBIB 部门,美国加利福尼亚州伯克利市 94720,美国 8 加州大学旧金山分校格拉德斯通研究所,美国加利福尼亚州旧金山市 94720,美国 9 加州大学伯克利分校生物工程系,美国加利福尼亚州伯克利市 94720,美国 10 这些作者贡献相同 11 主要联系人 *通信地址:doudna@berkeley.edu https://doi.org/10.1016/j.cell.2024.09.020
摘要 —本文研究了使用电反射法作为一种无损检测技术来监测并联电池组配置中电池极耳焊接的健康状况。开发了由圆柱形锂离子电池组成的 3D 模型,这些电池通过铜焊接在每个末端通过极耳连接。进行了电流表面分布分析,以了解反射信号的传播并选择最佳设置以提高反射灵敏度。然后,创建了几个严重程度和位置各异的缺陷模型来模拟焊接层中材料的逐渐损失。这项工作证明了基于反射仪的系统能够检测并联电池组配置中的焊接退化,据我们所知,这在文献中从未做过。索引词 —电反射法;锂离子电池极耳焊接;缺陷诊断
我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。
摘要 - 大型强子对撞机(LHC)的下一个升级(称为高亮度LHC)的目的是使加速器的碰撞率提高十倍。为了实现此目标,将更换Atlas和CMS实验相互作用区域之前和之后的偶极子和四极磁体。其中之一是分离重组偶极子MBRD,该偶极子MBRD的目标积分磁场为35 t·m的双孔径为105 mm,沿磁场沿4.78 m的磁场获得4.5 t。该磁铁开发的主要挑战之一是,这两个孔必须具有相同的极性,这会导致它们之间的磁串扰。因此,有必要为线圈开发左/右不对称的孔圈线圈设计,以补偿这种效果,这将产生不良的多物。另一个与两个孔径的极性相关的问题,这是通过在两个领孔周围组装的Al Alloy套筒的实现来管理的。该设计是在Cern-Infn Genova协议的框架内进行的,该行业的ASG超导体正在进行。1.6 m长的模型是建立并成功测试的,然后建造了一个全长原型,该原型最近交付给了CERN,而预计将在2022年初开始构建6个磁铁系列。此贡献将描述原型组装状态,还涵盖了领域的质量(FQ)方面,讨论了ASG的温暖磁性测量结果及其在谐波含量方面的含义。
“用于现实世界应用和开发的高级材料”将提供非常详细的概述,概述各种功能材料和新兴的高级设备,用于高科技领域的现实世界应用。The course will start with an overview of different classes of functional materials, including semiconductors, nanomaterials, composites, biomaterials, piezoelectric, and thermoelectric materials with a particular focus on their implementation in real-world applications, with main attention to electronic devices, including solar cells, light emitting diodes, transistors, capacitors and sensors.该模块将继续详细说明这些新兴的高级功能材料的必要概念,这些材料将使学生能够解释材料选择,产品设计,设备制造,表征技术,材料翻译,市场趋势及其未来前景的原理。该模块将弥合基本材料科学知识与实现现实世界应用中新型产品设计和制造的实施之间的差距。此外,还将提供许多基于新型功能材料的实际应用的工业和企业案例研究。该模块将在学生中发展各种不同的能力和技能,使他们能够为未来的企业冒险,行业的就业工作做好准备,并在博士层面进行进一步的研究
近年来,对计算资源的需求巨大,这导致人们投入大量精力从理论上简化复杂问题,并开发各种技术平台来解决特定类别的难题。激子极化子似乎是一种非常有前途的物理系统,是这种技术进步的完美基础。主要研究工作集中在描述高复杂性计算问题与物理系统状态之间的对应关系。结果表明,使用激子极化子,可以实现具有非平凡相配置的 𝑘 -局部哈密顿量,其中 𝑘> 2。除此之外,新贡献在于引入了复杂的耦合切换方法,提供了一种显著提高使用激子极化子平台解决优化问题的成功概率的方法,并且适用于一般的增益耗散模拟器。从算法的角度来看,可以将该方法用作传统计算机架构上的一种有用的启发式方法。此外,还考虑了不同计算任务之间的现有对应关系,并提出了将任意计算任务编码/解码到光学/光子硬件中的方法。考虑了最通用和最复杂的机器学习方法,并考虑了潜在的架构映射。结果表明,使用非线性自旋簇,可以近似预定的架构,累积误差很小,突破了可用计算的极限。这种新的替代方法允许人们在许多凝聚态系统上直接实现神经网络算法,具有各种优点,例如减少了实现更传统的神经网络实现方法所需的额外变量的开销。由于激子极化子具有有前途和诱人的特性,并且具有前瞻性技术,因此除了现有的应用外,还开展了潜在应用的研究,重点是周期性结构及其分析描述。通过强调分析形式,引入的方法可以确定凝聚态的速度分布如何随参数(例如捕获和耗散电位)而变化,从而避免大量计算。建立了行为和相图,为超快信息处理和模拟模拟器的可控激光或极化子流开辟了道路。总而言之,我们可以完全有信心地说,激子-极化子是一个有前途的平台,但尚未充分发挥其潜力。
本文介绍了60 Coγ辐射硬度对双极结型晶体管特性和参数的影响,以分析核领域中使用的单个器件的性能变化。双极结型晶体管(BJT)的类型为(BC-301)(npn)硅,晶体管用60 Co源以不同剂量(1、2、3、4和5)KGy进行γ辐射辐照。使用带稳压电源的晶体管特性仪研究了辐照前后双极结型晶体管的特性和参数。结果表明,由于晶体管增益下降和硅电阻率增加,双极结型晶体管的饱和电压V CE(sat)降低。受电离辐射影响的双极结型晶体管的另一个参数是集电极-基极漏电流,电流的大幅增加是由结附近的累积电荷引起的。1.引言
为了为 CERN 加速器隧道的新灯具提供耐辐射 LED 电源,需要对商用级功率晶体管在高水平粒子辐照下进行特性分析,因为这对半导体器件来说是一个恶劣的环境。这项工作描述了 24 GeV/ c 质子辐照对商用 GaN 混合漏极嵌入式栅极注入晶体管 (HD-GIT) 的影响,当时的剂量为 5.9 × 10 14 p/cm 2。漏极漏电流、阈值电压和 I ds − V ds 曲线的测量表明,在考虑的剂量之后,GaN HD-GIT 的电性能仅发生微小变化;例如,辐照后阈值电压平均增加约 11-13 mV。我们还对质子辐照引起的性能退化提出了物理解释;尤其是高电场下 2DEG 通道中的电子漂移速度似乎由于辐射引起的声子弛豫速率增加而降低。最后,提出了一种使用 GaN HD-GIT 进行电流控制的 AC/DC LED 电源,用于 CERN 隧道的新型灯具,满足辐射硬度和光质量方面的要求。