摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
摘要:冰和水的电子特性和光学响应由其分子结构(包括氢原子的量子力学性质)复杂地决定。尽管之前进行了大量研究,但对核量子效应 (NQE) 对有限温度下水和冰电子结构的影响的全面了解仍然难以实现。在这里,我们利用分子模拟,利用高效的机器学习潜力和多体微扰理论来评估 NQE 如何影响水和六边形冰的电子带。通过比较路径积分和经典模拟,我们发现与水相比,NQE 导致冰的基本间隙重正化更大,最终在两个系统中产生相似的带隙,这与实验估计一致。我们的计算表明,相对于水,冰中质子的量子力学离域增加是导致 NQE 对冰电子结构增强的关键因素。
多环芳烃(PAHS)的化学合成由Scholl 11-13和CLAR 14-16率先开创,并在整个20世纪进一步发展,正如我们先前的评论文章所总的总结。9,特别是在高效合成六边形 - 己糖甲苯烯(P -HBC,2)之后,通过氧化性分子内环氢化物的六磷酸化苯基苯苯(1)(图。1),通过使用量身定制的寡苯基作为原始物质,获得了多种pahs的PAH。9这样的PAH,由SP 2碳框架组成,延伸到1 nm以上,可以被视为最小的纳米属或石墨烯分子。10,17在过去十年中,扩展的PAH因此吸引了新的合成兴趣,并且作为结构定义良好的石墨烯分子,在未来的应用中具有很大潜力,例如在纳米电子,光电子四元素和菠菜中,具有很大的潜力。18–23
在这项研究中,使用溶液燃烧方法在500°C的温度下成功合成了0.95zno-0.5cuO纳米复合材料6小时。使用X射线衍射(XRD)和紫外可见(UV-VIS)光谱分析材料的结构和光学特性。使用针对大肠杆菌(大肠杆菌)的琼脂井扩散法测试了抗菌特性。XRD分析显示尖锐的Bragg峰,表明纳米复合材料的高结晶度。该材料表现出六边形(ZnO)和单斜晶(CUO)相的混合物。计算的结晶石尺寸为20.18 nm,确认了复合材料的纳米级结构。UV-VIS光谱学在紫外线下显示出光学活性,测得的光条间隙为3.11 eV。抗菌测试显示出令人鼓舞的结果,复合材料在15.6 mg/ml浓度的抑制区直径为15.12 mm,针对大肠杆菌。
摘要。氢进化反应(她)已成为生产清洁和可持续能量的有前途的技术。近年来,研究人员一直在探索各种材料,以有效地活动。在这项研究中,我们通过水热技术报告了两种不同材料,即MOS2和MOS2-RGO的合成。X射线衍射(XRD),傅立叶转换红外(FTIR)光谱和拉曼光谱法用于表征材料。XRD分析揭示了具有高度结晶度的六边形MOS2的形成。FTIR分析证实了MO-S键的存在,而拉曼光谱学为MOS2的形成提供了证据。评估材料的活性,线性扫描伏安法(LSV)。结果表明,MOS2和MOS2-RGO具有良好的活性,发作电位低和高电流密度。MOS2 -RGO材料与MOS2相比显示出其活性的改善,表明氧化石墨烯是增强MOS2性能的共催化剂的潜力。
对泰米尔纳德邦帕拉尔-马尼穆萨流域土壤资源的描述和分类在持续优化利用自然资源方面发挥了至关重要的作用。6,7 土壤资源测绘中的土壤概念 土壤 土壤是三维的、自然的体,由人类用地球材料改造,含有生物物质,能够在户外支持植物。上限是空气或浅水。下限通常是坚硬的岩石或视觉上没有生物活性的泥土材料。 土壤小体 它是一种土壤的最小体,形状为六边形,考虑土壤的体积。表面大致为多边形,面积从 1 平方米到 10 平方米不等,取决于土壤的性质和变异性。 剖面 它是土壤小体的垂直剖面,显示土层的性质和排列。在土壤资源清单中,通常通过剖面检查和描述土层。它是土壤小体中的采样单位。剖面检查长达 2m 或
• 它具有高弹性模量和高抗拉强度,因此具有极强的耐磨、耐磨损和耐冲击性。 • 由于其高介电常数,它是极好的电绝缘体。 • 由于蓝宝石的热稳定性,当暴露于从低温到 2000C 以上的温度时,它不会失去任何机械和光学属性。 • 导热性大于其他光学材料和大多数电介质。 • 由于极端热循环,不会造成表面损坏或失透。 • 与其他光学材料不同,它在极高的温度下不会下垂或塌陷。 • 它具有很强的耐腐蚀性,并且比大多数其他光学和非光学硬质材料更耐腐蚀性化学品。 • 在高辐射系统中不会发生日晒。 • 卓越的光学传输范围从紫外线到中红外线。(见图 2)蓝宝石具有六边形/菱形结构,并且具有取决于晶体方向的属性(图 1)。蓝宝石衬底有 C、R、A 和 M 平面以及随机取向。随机取向最便宜,通常用于非关键光学或机械应用。
摘要:表征2D材料中的缺陷,例如沉积化学蒸气(CVD)的裂纹 - 生长的六边形氮化硼(HBN)对于评估材料质量和可靠性至关重要。传统的特征方法通常是耗时且主观的,可以受到HBN的光学对比度有限的阻碍。为了解决这个问题,我们使用Matlab的Image Labeler并进行了对细致的注释和训练,利用了转移的CVD生长的HBN膜中的Yolov8n深学习模型来进行自动裂纹检测。该模型展示了有希望的裂纹检测能力,准确地识别了不同大小和复杂性的裂纹,并且损失曲线分析揭示了渐进式学习。然而,精确和回忆之间的权衡突出了需要进一步完善的必要性,尤其是在区分多层HBN地区的精细裂缝方面。这项研究证明了基于ML的方法简化2D材料表征并加速其集成到高级设备中的潜力。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 𝜇 m 的六边形像素矩阵,由低噪声和超快的 SiGe HBT 前端电子设备读出。使用厚度为 50 𝜇 m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用相同原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。