危险和风险分析 (H&RA) 团队识别出可能造成灾难性后果的危险事件。其中一种事件可能是容器液位下降,导致高压气体流向未达到该压力的下游设备。可以指定安全仪表功能 (SIF) 来降低此事件的风险。SIF 检测低液位并通过关闭出口截止阀来防止漏气。指定三个冗余液位变送器来检测低液位情况。基本过程控制系统使用其他液位设备来监视和控制容器液位。当三个液位变送器中的任意两个检测到低液位(三选二,2oo3)时,安全仪表系统 (SIS) 会关闭出口截止阀。如果一个液位变送器发生危险故障,SIF 仍可工作;但是,如果两个变送器发生危险故障,SIF 将无法关闭阀门,导致容器中的液位下降,并可能造成灾难性后果。
公式 1 中表达的简单理论基于系统中没有显著的休眠。然而,在大多数复杂系统中,可能存在许多故障,这些故障通常直到维护期间进行系统检查时才被发现。系统设计人员需要集中精力安排系统架构以减少休眠故障的数量;其余故障需要定期进行维护检查,以便它们与其他故障一起发生的概率达到可接受的水平。然而,图 1 中所示的简单理论曲线和实际曲线之间存在差异的主要原因是通道故障并非完全独立,并且共因故障对实际实现的总系统故障概率有显著影响。在确定这些故障后,应考虑设计变更、制造技术、维护措施和系统操作程序,以消除或减轻共因故障。虽然不是详尽的清单,但前面的章节讨论了可能对大多数飞机类型构成“威胁”的一些最常见的共因故障。系统外部的风险可能是由各种事件引起的,其中许多被称为特殊风险。
摘要 . 印度尼西亚实验动力反应堆 (RDE) 的基本设计参考了中国清华大学自 1995 年以来开发并于 2000 年 12 月首次通过评审的高温气冷反应堆测试模块 (HTR-10)。目前,核电站 (NPP) 行业控制系统市场使用微控制器和可编程逻辑控制器 (PLC)。然而,由于基于计算机的技术容易受到网络攻击、软件共因故障 (CCF) 和系统复杂性的影响,因此,RDE 设计的开发应根据最新技术考虑,并符合在维护核电站安全方面发挥重要作用的仪表和控制 (I&C) 系统的发展。本研究涉及基于 PLC 系统的 I&C 逆向工程程序,以从先前的设计中获得设计规范,从而通过使用现场可编程门阵列 (FPGA) 作为替代平台来考虑系统硬件,从而提高其可靠性。在开发逆向工程之前,应该分析为什么 FPGA 成为替代 PLC 系统的替代系统。逆向工程过程将涵盖基于模型的系统工程 (MBSE),这是一种正式的建模应用程序,用于支持系统需求、设计、分析、验证和确认 (V&V) 活动。该过程从概念设计、需求分析开始,持续
如今,对安全有要求的应用程序已无处不在,可在各种边缘设备中找到。然而,这些设备中的微控制器尽管通过实现多核和缓存层次结构提供了中等性能,但可能无法提供足够的支持来实施最高完整性级别所需的某些安全措施,比如锁步执行,以避免所谓的共因故障(即影响冗余组件的故障导致所有冗余组件出现相同的错误)。为了解决这一限制,最近在 [ 2 ] 中提出了一种基于软件监视器的方法,该方法在内核之间强制执行某种基于软件的锁步执行,并提供了概念证明。本文介绍了 SafeSoftDR,这是一个库,它提供了一个标准接口,用于在非原生锁步内核上部署基于软件的锁步执行,从而减轻了最终用户创建冗余进程、复制输入/输出数据和执行结果比较的负担。我们的库已经在基于 x86 的 Linux 上进行了测试,目前正在集成到针对安全相关应用的开源 RISC-V 平台上,从而为安全关键型应用提供了便捷的环境。
如今,对安全有要求的应用程序已无处不在,可在各种边缘设备中找到。然而,这些设备中的微控制器尽管通过实现多核和缓存层次结构提供了中等性能,但可能无法提供足够的支持来实施最高完整性级别所需的某些安全措施,比如锁步执行,以避免所谓的共因故障(即影响冗余组件的故障导致所有冗余组件出现相同的错误)。为了解决这一限制,最近在 [ 2 ] 中提出了一种基于软件监视器的方法,该方法在内核之间强制执行某种基于软件的锁步执行,并提供了概念证明。本文介绍了 SafeSoftDR,这是一个库,它提供了一个标准接口,用于在非原生锁步内核上部署基于软件的锁步执行,从而减轻了最终用户创建冗余进程、复制输入/输出数据和执行结果比较的负担。我们的库已经在基于 x86 的 Linux 上进行了测试,目前正在集成到针对安全相关应用的开源 RISC-V 平台上,从而为安全关键型应用提供了便捷的环境。